Handläggare
Datum
2012-03-16
Oltner Jenny klk
Solander Christer mk
Sundbom Rolf ksu

Diarienummer
KSN-2011-0168

Kommunstyrelsen

Genomförande av Åtgärdsprogram för luft 2011

Förslag till beslut

Kommunstyrelsen föreslås besluta
att till länsstyrelsen avge rapport enligt bilaga.

Ärendet

Länsstyrelsen fastställde den 24 november 2006 Uppsala kommuns förslag till åtgärdsprogram för att klara miljökvalitetsnormerna för partiklar och kvävedioxid.
Kommunen ska årligen rapportera till länsstyrelsen om arbetet med åtgärdsprogrammet. Uppsala kommun rapporterar därför nu för år 2011.

Föredragning

Rapporten är gemensamt framtagen av kommunledningskontoret, kontoret för samhällsutveckling samt miljökontoret. Rapporten baseras till stora delar på ett underlag beställt från WSP Environmental.

Under 2011 överskreds miljökvalitetsnormen för partiklar (PM 10) 40 av tillåtna 35 dygn. Resultatet är en försämring jämfört med 2010 då siffran låg på 29 av tillåtna 35 dygn. Årsmedelvärdet har i likhet med tidigare år däremot inte överskridits.

År 2011 överskreds miljökvalitetsnormen för kvävedioxid 27 av tillåtna 7 dygn. År 2010 var motsvarande överskridande av dygnsnormen 40 dygn. Årsmedelvärdet har till skillnad från 2010 inte överskridits under 2011.

Förklaringarna till överskridande av dygnsnormen för både partiklar och kväveoxider är komplexa och sammanhänger bla med ombyggnadsarbeten, den kalla och snörika vintern, mycket sand på gatorna samt en torr vår. Åtgärder som har vidtagits för att förbättra luftkvaliteten är bla förbud mot dubbdäck, hastighetsbegränsningar, ökad och förändrad renhållning, beslut om miljözon från 2013 samt förbättring av möjligheter att resa kollektivt.

Under 2012 kommer åtgärdsprogrammet för luft att revideras av kommunen.

Kommunledningskontoret

Kenneth Holmstedt
stadsdirektör

KOMMUNSTYRELSEN

Handläggare		
Oltner Jenny	Datum	Diarienummer
	2012-03-16	KSN-2011-0168

Länsstyrelsen

Genomförande av \AA Ågärdsprogram för luft 2011

Länsstyrelsen fastställde den 24 november 2006 Uppsala kommuns förslag till åtgärdsprogram för att klara miljökvalitetsnormerna för partiklar och kvävedioxid. Kommunen ska årligen senast 31 mars rapportera till länsstyrelsen om arbetet med åtgärdsprogrammet.

Följande redogörelse är gemensamt framtagen av kommunledningskontoret, kontoret för samhällsutveckling och miljökontoret. Redogörelsen baseras till stora delar på ett underlag framtaget av WSP Environmental. Se bilaga 1.

Partiklar

Överskridanden av miljökvalitetsnormer för partiklar kan bla mätas genom dygnsnormer eller genom årsmedelvärde. Under 2011 överskreds miljökvalitetsnormen för partiklar (PM 10) 40 av tillåtna 35 dygn. Resultatet är en försämring jämfört med 2010 då siffran låg på 29 av tillåtna 35 dygn. Årsmedelvärdet har i likhet med tidigare år inte överskridits.

Kvävedioxid

Överskridanden av miljökvalitetsnormer för kvävedioxid kan i likhet med partiklar bla mätas genom dygnsnormer eller genom årsmedelvärde. År 2011 överskreds miljökvalitetsnormen för kvävedioxid med 27 av tillåtna 7 dygn. År 2010 var motsvarande överskridande av dygnsnormen 40 dygn och år 20099 dygn. Årsmedelvärdet har till skillnad från 2010 inte överskridits under 2011.

Förklaringar till överskridanden av dygnsnormen för partiklar och kvävedioxid

 Förklaringarna till överskridandena är komplexa och sammanhänger inte minst med pågående byggnadsarbeten i stadens centrum vilket ledde till att det våren 2011 inte gick att upprätthålla dubbdäcksförbudet hela perioden ut. Den långa och kalla vintern 2010/2011 bidrog till att dygnsnormen av kvävedioxid överskreds. Mycket sand på gatorna i kombination med den extremt torra våren är viktiga förklaringar till de överskridanden av dygnsnormen för partiklar som gjordes under året.
Vidtagna åtgärder för att förbättra luftkvaliteten i Uppsala

Dubbdäck

Andelen dubbdäck har under det första året med dubbförbud på Kungsgatan minskat markant, till mellan 10-20 \%. Den största effekten har dock blivit att den totala biltrafiken minskat med ca $30-40 \%$.

Hastighetsbegränsningar
Hastigheten är en viktig faktor när det gäller uppvirvling och partikelbildning. Därför genomfördes en hastighetssänkning i stora delar av stadskärnan i maj 2010.
Hastighetssänkningen har därefter bidragit till att minska partikelhalterna.
Renhållning
Ökad frekvens av högtrycksspolning med vakuumsugning i centrum påbörjades med början 2008 i syfte att få ner partikelhalterna. Dessvärre har det visat sig ge vissa negativa effekter i form av ökat behov av fogning med material som ökar förekomsten av damm och partiklar. Kommunen prövar och utvärderar dock olika metoder fortlöpande för att förbättra renhållningen. Se bilaga 4.

Miljözon
Miljözon för tunga fordon i den centrala staden införs från 1 januari 2013. Beslutet förväntas i framtiden ge minskningar av utsläpp av kväveoxider i centrum, eftersom en stor del kommer från busstrafiken.

Ökat resande med kollektivtrafik
Resecentrum och andra fysiska åtgärder har som nämnts ovan skapat en del problem under byggfasen, men det är åtgärder som på sikt syftar till att förbättra möjligheten att åka kollektivt, gå eller cykla. Genom att flytta över andelen resande från bil till mer miljövänliga färdmedel bidrar vi till att luftkvaliteten i Uppsala förbättras.

Fortsatt arbete

En revidering av åtgärdsprogrammet för luft kommer att påbörjas under våren. Införandet av miljözon, förbättrade metoder för renhållning, avslutade byggnationer och framförallt en attraktivare kollektivtrafik förväntas bidra till att förbättra luftkvaliteten framöver.

Kommunstyrelsen

Fredrik Ahlstedt
Ordförande

Astrid Anker
Sekreterare

Bilagor

1) WSP Environmental, Analys av luftkvalitet och àtgärder i Uppsala 2011
2) Gatu- och trafikkontoret, Redovisning av åtgärder för att förebygga överskridande av miljökvalitetsnormerna för partiklar, PM 10. GTN-2009-0334
3) Kontoret för samhällsutveckling, Gaturenhållningens åtgärder under 2008-2011 för att minska halterna av PM 10 i centrala Uppsala. GSN-2012-0338
4) Kontoret för samhällsutveckling, Sammanfattning av åtgärder under åren 2008-2010 för att förebygga överskridanden av miljökvalitetsnormerna för partiklar, PM 10 i centrala Uppsala (inklusive planerade åtgärder framöver). GSN-2012-0338

Analys av luftkvalitet och åtgärder i Uppsala 2011
2012-02-21

Upprättad av: Sara Janhäll

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

RAPPORT

Analys av luftkvalitet och åtgärder i Uppsala 2011

Kund
Uppsala Kommun

Konsult

WSP Environmental
Box 13033
40251 Göteborg
Besök: Rullagergatan 4
Tel: +46317272500
Fax: +46317272501
WSP Environment \& Energy Sweden
Org nr: 556057-4880
Styrelsens säte: Stockholm
www.wspgroup.se

Kontaktpersoner

Sara Janhäll 031-7272608

Fotograf för omslagsbilden: Christer Solander, Uppsala Kommun

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Innehåll
SAMMANFATTNING 5
1 FÖRORD 6
2 ALLMÄN BAKGRUND 6
2.1 Hälsoeffekter av luftföroreningar 6
2.2 Miljökvalitetsnorm (MKN) 6
2.3 Förhållandet mellan kvävedioxid och kväveoxider 8
2.4 Åtgärder o åtgärdsprogram 8
2.5 Partikelhalter i stadsmiljö 9
2.5.1 Dubbdäcksförbud i olika städer 9
2.6 Kvävedioxidhalter i stadsmiljö 9
3 BESKRIVNING AV LUFTKVALITETEN I UPPSALA 10
3.1 Partikelhalterna i Uppsala 10
3.2 Kvävedioxidhalterna i Uppsala 11
4 JÄMFÖRELSE AV LUFTKVALITET I OLIKA STÄDER 2010 13
4.1 Partikelhalter 13
4.2 Kvävedioxidhalter 14
5 ÅTGÄRDER FÖR UPPSALAS LUFTKVALITET 15
5.1 Åtgärdsplan Uppsala 15
$5.2 \quad 30-z o n e n$ 16
5.3 Miljözon 17
5.3.1 Miljözon i Uppsala 18
5.3.2 Busstrafikens påverkan på luftkvaliteten 19
5.3.3 Miljözon i Stockholm 21
5.3.4 Miljözon i Göteborg 21

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

5.4 Dubbdäcksförbud 22
5.5 Flyttning av trafik 23
5.6 Kollektivtrafik 24
5.6.1 Andra skäl till de uppmätta kvävedioxidhalterna 24
6 SLUTSATS OCH FÖRSLAG 25
6.1 Miljözon 25
6.2 Slitagepartiklar och återuppvirvling 25
6.3 Trafik och trafiktålighet 25
7 LITTERATUR 26
8 BILAGOR 27
A. OM DUBBDÄCKSFÖRBUD OCH EMISSIONER 27
B. MILJÖZONEN I TRAFIKFÖRORDNINGEN 27
C. ÅRSRAPPORT 2010 27
D. STUDENTRAPPORT OM BUSSAR OCH NO2 27E. REDOVISNING AV ÅTGÄRDER FÖR PARTIKLAR27

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Sammanfattning

WSP Environmental AB har fătt i uppdrag att utreda orsaker till den luftkvalitetet som råder i Uppsala. Rapporten sammanfattar Uppsalas luftkvalitet i relation till luftkvalitet och åtgärder i andra delar av Sverige, samt visar på resultat av de åtgärder som genomförts genom det gällande åtgärdsprogrammet i Uppsala.

I uppdraget ingår också kontakter med de studenter som har arbetat med utredning om tung trafik och busstrafik i relation till kvävedioxidhalter i Uppsala samt möten och diskussioner direkt med beställaren under året.

En hel del åtgärder för att komma tillrätta med luftkvaliteten i Uppsala har genomförts. Halterna av partiklar har under 2010 legat under miljökvalitetsnormerna, för första gången på mycket länge. För kvävedioxid däremot har 2009 års överskridande av dygnsnormen ökat under 2010, och årsnormen för kvävedioxid har överskridits för första gången sedan 2006. Skälet till denna nya bild är flera, i och med att många olika åtgärder har genomförts som påverkar situationen på olika sätt. Analysen av 2011 års halter har inte ingått i analysen, men värdena rapporteras. Stora delar av analysen är dock generell och kan tillämpas direkt även på 2011 års data. En del av 2011 års analys som genomförts inom Uppsala kommun redovisas i bilaga E.

Dubbdäcksförbudet har inneburit en minskad andel dubbdäck av trafiken på Kungsgatan, men också en minskning av den totala trafiken. Andelen tung trafik, särskilt busstrafik, på Kungsgatan är stor. För att komma tillrätta med partikelhalterna har intensifierad städning med specialmaskiner skett bland annat i mätstationens närhet.

Denna rapport baseras på information som har samlats in inom Uppsala kommun, en undersökning av busstrafikens påverkan på kvävdioxidhalterna i området samt jämförelser med hur dubbdäcksförbud har fungerat i t.ex. Göteborg och Stockholm. Diskussioner har även förts med flera personer aktiva inom området.

Resultatet är att busstrafikens påverkan på kvävedioxidhalterna är av stor vikt, samt att arbetet med luftkvaliteten i Uppsala har gett ett positivt resultat på halterna av partiklar i Uppsala. Resultaten pekar också på att ansträngningarna för att minska kväveoxiderna hela tiden måste finnas med, då dessa har ökat nu när fokus under en tid har legat mer på partikelproblemet. Ny kunskap om främst partikelemissioner kommer fram mycket snabbt och behöver hela tiden inhämtas på nytt från forskningen.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

1 Förord

WSP Environmental AB har fătt i uppdrag att utreda orsaker till den luftkvalitetet som råder i Uppsala i dagsläget, i relation till uppmätta halter, meterologi och åtgärder som genomförts framförallt som resultat av det gällande åtgärdsprogrammet i Uppsala.

I uppdraget ingår också kontakter med de studenter som har arbetat med utredning om tung trafik och busstrafik i relation till kvävedioxidhalter i Uppsala, samt möten och diskussioner direkt med beställaren under året.

Uppsala har under en tid haft svårt att klara miljökvalitetsnormerna för utomhusluft (MKN, beskrivs nedan). Detta har resulterat i att Länsstyrelsen den 24 november 2006 fastställde Uppsala kommuns förslag till åtgärdsprogram för att klara miljökvalitetsnormerna för partiklar och kvävedioxid(dnr 502-8456-06). Uppsala kommun kompletterade våren 2009 åtgärdsprogrammet med en åtgärdsplan för 20092010 (KSN-2009-0249), och har också tagit fram uppföljningsrapporter under dessa år. Denna utredning är ett stöd i utvärderingen av olika åtgärder, såsom dubbdäcksförbud, 30 -zon och miljözon, samt en orientering i hur halterna även påverkas av tex väderlek och intransport, vilket inte är ett resultat av lokala förändringar i utsläpp.

2 Allmän bakgrund

Här sammanfattas allmän info om luftföroreningar, hälsoeffekter, lagstiftning inom området, åtgärder och vad de förhöjda halterna av luftföroreningar i staden kan bero på.

2.1 Hälsoeffekter av luftföroreningar

Luftföroreningar utomhus kommer från ett stort antal källor som till exempel trafiken (som i stadsmiljö är den dominerande källan), uppvärmning, långdistanstransport och industriprocesser. Partiklar och kväveoxider är exempel på föroreningar som orsakar många olika typer av besvär och sjukdomar. Kväveoxider påverkar bl.a. andningsorganen och är särskilt problem för astmatiker och allergiker. Dessutom är kvävedioxid en indikator på andra föroreningar. I ett statistiskt urval av Sveriges befolkning angav en tiondel att de hade besvär orsakat av främst bilavgaser och vedeldning. Antalet lungcancerfall till följd av föroreningar i tätortsluften i Sverige uppskattas till mellan 100 och 200 fall per år och andra cancerformer bedöms mellan 100 och 1000 fall per år härröra från luftföroreningar (http://www.regeringen.se).

2.2 Miljökvalitetsnorm (MKN)

För att begränsa negativ inverkan av luftföroreningar på människans hälsa och miljö har Sveriges regering fastställt miljökvalitetsnormer (MKN). Miljökvalitetsnormer är beslutade i enlighet med EU-direktiv och baseras på aktuell forskning inom området. Här är NO_{2} och PM_{10} utvalda för att dessa ämnen är de som i praktiken visar sig riskera att överstiga MKN i trafikrelaterade områden.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Miljökvalitetsnormer för luft ska följas i utomhusluft (inte under tak med väggar på mer än en sida, t.ex. tunnlar) samt där människor vistas, dock ska luft i gaturum anses vara representativ för en stäcka större än 100 meter och inte närmre korsning än 25 meter (Luftguiden, 2011). MKN ska också bedömas utifrån ett s.k. normalt väderår, dvs. väderleken bör inte vara ovanlig under det år man studerar. Både 2009 och 2010 har varit mycket kallare än genomsnittet under en lång tid, vilket gör att dessa inte kan anses vara normala väderår. Ofta görs t.ex. beräkningar av luftkvalitet för en mycket längre tid än ett år, för att undvika att ovanliga väderlekssituationer påverkar bedömningen.

Halterna av luftföroreningar varierar kraftigt över tiden, och kan vid ogynnsam väderlek ge korta episoder med mycket höga halter. För att åtgärderna ska koncentreras till de mer normala halterna har man i regelverken tillåtit ett antal överskridanden av normen under en begränsad tid. Oftast definieras dessa tillfällen genom att man tillåter att t.ex. 2% av alla uppmätta halter under ett år överstiger normen, vilket motsvarar 175 timmar per år för timupplöst data, och 7 dygn per år för dygnsupplöst data, jämför Tabell 1. Detta kallas för 98-percentilen, i och med att 98% av värdena måste ligga under gränsvärdet.
Tabell 1. Miljökvalitetsnormer och tröskelvärden för halter av $N O_{2}$ och $P M_{10}$ i $\mu \mathrm{g} / \mathrm{m}^{3}$.

Miljö-	Övre	Nedre	Tillåtna överskri-
kvalitets-	tröskel-	tröskel-	danden
norm	värde	värde	

Kvävedioxid, NO_{2}				
Årsmedelvärde	40	32	26	Inga överskridan- den
Dygnsmedelvärde	60	48	36	7 dygn per år
Timmedelvärde	90	72	54	175 timmar per år
Partiklar, PM_{10}				
Årsmedelvärde	40	28	20	Inga överskridan- den
Dygnsmedelvärde	50	35	25	35 dygn per år

Tabell 1 visar miljökvalitetsnormer för PM_{10} och NO_{2}. Både dygns och timmedelvärden för NO_{2} är definierade som en 98-percentil vilket innebär att minst 98% av timmedelvärdena måste vara under gränsvärdet. För kvävedioxid innebär detta att ett dygnsmedelvärde på $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ får överskridas 7 dygn per år innan MKN överträds, medan för det för timmedelvärde tillåts 175 timmar överskridanden innan MKN överträds.

Miljökvalitetsnormen för PM_{10} är definierad som 90-percentilen av dygnsmedelvärdet vilket innebär att dygnsmedelvärde på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ får överskridas 35 gånger per år innan MKN överträds.
Årsmedelvärdet får inte överskridas alls för varken NO_{2} och PM_{10}.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

För att förbättra luftkvaliteten utöver vad som krävs i miljökvalitetsnormen finns även tröskelvärden, övre och nedre, vilka talar om hur kvalitetskontrollen av luftkvaliteten ska göras inom kommunerna. Dessa anges i tabell 1, och man kan läsa mer på naturvårdverkets hemsida.

2.3 Förhållandet mellan kvävedioxid och kväveoxider

Kväveoxider, också benämnt NOx , är summan av halterna av kvävemonoxid (NO) och kvävedioxid $\left(\mathrm{NO}_{2}\right)$. NOx-halterna regleras endast i skydd för växtlighet, medan miljökvalitetsnormerna för NO_{2} finns för att skydda människors hälsa. Problem att klara MKN för NO_{2} finns främst i trafiknära miljöer.

Allmänt minskar halterna av kvävedioxid i många miljöer i Sverige, men de minskar relativt långsamt. Utsläpp av kväveoxider sker främst i form av NO, som omvandlas till NO_{2} i omgivningsluften, oftast genom reaktion med ozon. Nära källan finns därför mer NO och mindre NO_{2} än längre från källan. På grund av denna reaktion är halterna av ozon normalt lägre i stadsmiljö, nära kväveoxidutsläpp, än utanför städerna, vilket också gör att halterna av NO är högre i stadsmiljö. Med minskade utsläpp av kväveoxider ökar halterna av ozon och mer NO kan omvandlas till NO_{2}. Halten av NOx minskar därför snabbare än halten av NO_{2} i stadsluft.

I och med att trafiken är den största källan till NOx , och trafikarbetet ökar, är det svårt att komma tillrätta med NO_{2}-halterna, trots att mycket görs för att minska emissionerna per fordon. NO_{2} används framförallt som tecken på att trafikutsläppen är höga, och hälsoeffekterna som har tillskrivits NO_{2} kan eventuellt påverkas av de hälsovådliga ultrafina partiklarna från avgaser, som man normalt inte mäter.

2.4 Atgärder o åtgärdsprogram

Luftguiden som är utgiven av Naturvårdsverket är en handbok för övervakning och åtgärder för att klara miljökvalitetsnormer, där förslag på åtgärder lämnas. (se litteraturlista sist i denna rapport)

Trafiken har identifierats som den stora källan till problemen med luftföroreningshalterna i stadsmiljön. Ofta tänker man sig att reglera trafiken med t.ex. sänkt hastighet och dubbdäcksförbud. Sänkt hastighet ger i stadsmiljö svåröverskådliga resultat i och med att utsläppen kan öka vid mycket låga hastigheter. Dubbdäcksförbud har nyligen testats i ett mindre antal städer i Sverige, och utvärderingar av de olika försöken redovisas senare i denna rapport. Man kan också inrätta miljözoner, avseende trafik tyngre än 3,5 ton, eller i framtiden även gällande lättare trafik.

Tydligare styrning av trafiken kan också ge resultat, t.ex. i form av köinformation som kan tipsa trafikanter att undvika de värsta kösituationerna och grön våg, där trafiksignalsoptimering kan ge färre onödiga stopp vid trafikljus, och således mindre utsläpp per fordon. Detta kan också ge bättre trafikgenomströmning, vilket ökar vinsten med den trafik man ändå har. Man kan också införa avgasmätning för enskilda fordon och förbättring/skrotning av dessa kan ge stora genomsnittliga utsläppsvinster.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

2.5 Partikelhalter i stadsmiljö

I Sverige har vi ofta problem med att uppfylla miljökvalitetsnormen för partiklar, PM_{10}, främst för dygnsmedelvärdet. En viktig orsak till detta är de höga halterna av PM_{10} under våren, då vägbanorna torkar upp efter vinterns snö och slask, och trafiken virvlar upp vägdammet i luften. För att undvika de höga halterna under våren använder ett antal kommuner prognoser för partikelhalter tillsammans med dammbindningsmedel som binder dammet och minskar halterna under ett antal påföljande dagar. Utökad städning av gatumarken är ett annat sätt att fă ner mängden partiklar som virvlar upp vid passage av trafiken.

Problemet med det uppvirvlande vägdammet ökar med användningen av dubbdäck, som river upp en del av vägytan. Dubbdäcksproblematiken är inte helt utredd och forskningen pågår, men samtidigt brådskar det att åtgärda partikelhalterna och dubbdäcksförbud i olika städer blir allt mer vanligt, så även i Uppsala.
De olika emissionsfaktorer som har använts för dubbdäcksslitage varierar mellan 0,1 och $0,5 \mathrm{~g} / \mathrm{fkm}$ (gram per fordonskilometer). Vanligast är $0,3 \mathrm{~g} / \mathrm{fkm}$ för dubbdäck och $0,1 \mathrm{~g} / \mathrm{fkm}$ för odubbade vinterdäck.

En annan källa till partiklar i stadsluften är damning från halkbekämpning, såsom sandning av vägbanor. Hur stor påverkan detta har på PM10-halterna har inte utretts här, men det finns många studier inom området. En del städer använder tvättat grus, för att få med mängden riktigt fina partiklar i gruset. Gruset mals dock ner mellan vägbana och däck, och mindre partiklar bildas som kan virvlas upp i luften. Naturgrus dammar inte i samma utsträckning, men är inte heller lika effektivt som halkskydd.
För att komma till rätta med partikelhalterna i stadsluften är det också vanligt att man dammbinder. I princip sprids en saltlösning över vägen under natten innan det beräknas bli höga halter av partiklar i luften. Saltlösningen binder damm och vatten under en begränsad tid, men i och med att man på detta sätt kan fă ner halterna just den dag det beräknas överskrida MKN kan detta vara ett effektivt sätt att klara MKN. Både Göteborg och Stockholm använder denna metod. En nackdel kan vara att det kan bli något sämre väggrepp i samband med dammbindningen.

2.5.1 Dubbdäcksförbud i olika städer

Avseende dubbdäcksförbud har detta endast testats under en begränsad tid. I Stockholm infördes förbudet 1 januari 2010 på Hornsgatan. I Göteborg infördes dubbdäcksförbud på Friggagatan 1 oktober 2010. I Jönköping har man diskuterat dubbdäcksförbud, men efter Trafikverkets rapport om den försämrade trafiksäkerheten med dubbdäck i september 2010 har man gått ifrån den iden. I Uppsala infördes dubbdäcksförbud 1 oktober 2010. Dubbdäcksrestriktioner har också genomförts i Norge, Finland och Japan.

2.6 Kvävedioxidhalter i stadsmiljö

Den främsta källan till kväveoxider i stadsmiljö är olika former av förbränning. Det gäller trafiken såväl som uppvärmning. Kväveoxiderna hanteras direkt vid källan. Utsläppen från trafik påverkas främst av förändringar i trafikmängd, körstil och tra-

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

fiktyp, medan uppvärmningsutsläppen kan förändras med val av bränsle, införande av fjärrvärme, med flera åtgärder. Denna rapport hanterar endast trafikutsläppen.

3 Beskrivning av luftkvaliteten i Uppsala

Luftkvaliteten i Uppsala har länge varit föremål för utredningar. Under 2000-talet har miljökvalitetsnormer för både kvävdioxid, NO_{2}, och partiklar (PM_{10}) överskridits i perioder. Den största källan till både kvävedioxid och partiklar i stadsmiljö är trafiken. Luftkvaliteten i Uppsala redovisas av kommunen i Uppföljningsrapport för åtgärdsprogram 2010.

3.1 PartikeIhalterna i Uppsala

Figur 1. Arsmedelvärde och 90-percentil av dygnsmedelvärde för PMi0 från 1998 till och med 2010 på Kungsgatan. (* visar år som inte mätts hela året. Mätaren avstängd för flytt fr.o.m. 2006-11-26 till 2007-07-01)

Partikelhalterna i Uppsala har under ett antal år mätts upp både i gaturum (Kungsgatan) och som bakgrundsvärde (urbanmätnätet vid Stadsbiblioteket). Årsmedelvärdet har hela tiden legat under MKN (miljökvalitetsnormen), medan dygnsmedelvärdet ofta har överskridits vid flera tillfällen. Under 2010 klarades MKN för dygnsmedelvärden, genom att antalet dagar med överskridande endast var 29 av tillåtna 35 dygn 2010, se figur 1 och tabell 2. De låga halterna under 2010 kan antingen bero på vädret, med snötäckta gator, eller vara ett resultat av den minskade trafiken i området. Figur 1 visar att årsmedelvärdet var 2010 det lägsta sedan 1998, och ligger även under den övre utvärderingströskeln, som används för att bedöma när ytterligare utredningar är nödvändiga för luftkvalitetssituationen på platsen. Den nedre utvärderingströskeln är $20 \mu \mathrm{~g} / \mathrm{m} 3$ och något lägre än de uppmätta halterna under 2010 på

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Kungsgatan i Uppsala. MKN för dygn är något svårare att klara, och har passeras även den övre utvärderingströskeln under 2010, medan MKN klaras, se Tabell 2.

Tabell 2: Resultat av PM ${ }_{I 0}$ mätningar under 2008, 2009 och 2010, samt MKN, ÖUT=övre utvärderingströskeln och NUT= nedre utvärderingströskeln.

Resultat PM $\mathbf{1 0}_{\mathbf{0}}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{M K N}$	ÖUT/ NUT
Årsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	31	28	24	26	40	$28 / 20$
Max dygnsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	444	272	261	240		
$90-\% \mathrm{oll}$ av dygnsmedel- värde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	63	57	39	52	50	$35 / 25$
Antal dygn över $50 \mu \mathrm{~g} / \mathrm{m}^{3}$	53	43	29	40	35	

Vid mätning av bakgrundshalten vid Stadsbiblioteket i Uppsala (urbanmätnätet) uppvisade vissa dygn höga halter som bedöms vara tillfälliga lokala källor, vilket har medfört att datat inte har ingått i analysen.

3.2 Kvävedioxidhalterna i Uppsala

Mätmingarna av kvävedioxid i Uppsala har sedan 2008 skett med aktiv teknik för att kunna jämföras även med de MKN som gäller för tim- och dygnsmedelvärden. Man flyttade då stationen på Kungsgatans nordöstra sida, medan den mätstation som har legat på Kungsgatans sydvästra sida avvecklades efter att båda stationerna hade använts parallellt under en tid.

Årsmedelvärdet har under en längre tid legat relativt konstant i Uppsala, med överskridande av MKN för år på den station som nu inte längre används. Årsmedelvärdena var dock något lägre under 2007 och 2008 . Under 2010 utnyttjades endast mätstationen på Kungsgatans nordöstra sida, där alla MKN överskreds för första gången 2010, dvs årsmedelvärdet såväl som tim- och dygnsnormen. Dygnsnormen överskreds även 2009, men inte lika mycket som 2010 (9 dygn 2009 jämfört med 40 dygn 2010). Årsmedelvärdet för 2010 var $42 \mu \mathrm{~g} / \mathrm{m}^{3}$ mot tillåtna $40 \mu \mathrm{~g} / \mathrm{m}^{3}$, medan 2011 åter hade ett årsmedelvärde under MKN (35 $\left.\mu \mathrm{g} / \mathrm{m}^{3}\right)$. Övriga MKN överskreds även 2011.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Figur 2. Uppmätta halter av kvävedioxid a) som medelvärde över ett helt år och b) som 98percentiler för de senaste âren, där tidsupplöst data finns tillgängligt. (* visar IVLs diffusionsprovtagare, ** visar IVLs diffusionsprovtagare, samt ny plats Stadshuset och Tingsrätten och ${ }^{* * *}$ visar timupplöst data, se detaljer i Arsrapport Luft 2011).

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Tabell 3. Uppmätta halter av kvävedioxid som medelvärde över ett helt år, samt antalet överskridanden av miljökvalitetsnormen, MKN, för dygn och timme. Även MKN anges som jämförelse. (* visar saknat data)

Mätresultat NO						
2	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	MKN
Årsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ Sydvästra - Stadsteatern	36	40	$*$	$*$	$*$	40
Årsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ Nordöstra - Stadshuset	29	32	33	42	35	40
Mätmetod	Passiv	Passiv	Aktiv	Aktiv	Aktiv	
98-\%il dygn	$*$	$*$	61	75	65	60
Antal dygn> dygnsnormen	$*$	$*$	9	40	27	7
98-\%il timme	$*$	$*$	86	98	96	90
Antal timmar > timnormen	$*$	$*$	116	342	250	175

En del av de högre halterna av NO_{2} kring Kungsgatan kan ha påverkats på samma sätt som på andra orter, d.v.s. på grund av de låga utomhustemperaturerna.

4 Jämförelse av luftkvalitet i olika städer 2010

I och med att luftkvaliteten på en plats både påverkas av väderleken, intransporterade föroreningar och variationer i utsläppen är det ofta svårt att helt förstå hur de åtgärder man har genomfört har påverkat resultatet (luftkvaliteten). Under de senaste åren har vintrarna varit ovanligt stränga, med mer snö på vägarna och större behov av uppvärmning. På många platser har också omblandningen varit begränsad på grund av de låga temperaturerna. Under dessa väderleksförhållanden är ofta partikelhalterna lägre och kvävdioxidhalterna högre än normalt.
För att förstå hur stor del av mätresultaten för Uppsala kommun som beror av meteorologin och hur mycket som beror av utsläppen av luftföroreningar har resultaten jämförts med uppmätta halter av kvävedioxid och PM_{10} för andra städer i Sverige. De meteorologiska förhållandena under 2009 och 2010 har varit relativt lika i hela Sverige, främst avseende de stränga vintrarna. Flera av städerna har likande resultat för 2010 som Uppsala.

4.1 Partikelhalter

Trenden för partikelhalter varierar i Sverige. Urbanmätnätet visar dock att halterna av PM_{10} har ökat något under vinterhalvåret för de senaste åren, även om variationen mellan de kommuner som ingår i studien är stor. I ett flertal av de större städerna i Sverige minskar dock partikelhalterna i gaturum, främst under de två senaste åren. Detta gäller Uppsala, Stockholm, Göteborg, Umeå, men inte Malmö. Detta tyder på att de låga partikelhalterna kan vara ett resultat av väderlek, d.v.s. kalla vintrar med snö på vägarna, och med en mer normal väderlek kan partikelhalterna snabbt stiga

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

över MKN igen. Dock regleras partikelhalter relativt hårt, vilket förhoppningsvis också är ett av skälen till de minskade halterna. Partikelhalterna har under 2011 mer liknat tidigare års värden, men har inte hunnit jämföras med övriga städers halter inom detta projekt.

En del av förklaringen till Uppsalas lägre partikelhalter under 2010 kan alltså vara väderleken med mer snö på vägbanorna.

4.2 Kvävedioxidhalter

De mätningar som har genomförts i regionen, av Stockholms och Uppsala läns luftvårdsförbund, visar att NO_{2}-halterna både i Uppsala och i centrala Stockholm (E4 Lilla Essingen) har ökat under 2010, främst i taknivå, men även i flera gaturum. Inom Stockholm har alla rapporterade mätstationer högre årsmedelvärden av NO_{2} än året innan, med flera stationer som visar liknande eller högre antal överskridanden av olika miljökvalitetsnormer än Kungsgatan i Uppsala. Antalet överskridanden av MKN för timme motsvarar den fördelning över dygnet som trafiken har, dock med en viss förskjutning mot senare tidpunkter, se Figur 3.

Antal timmar under 2010 med kvävedioxidhalter över $90 \mu \mathrm{~g} / \mathrm{m}^{3}$

Figur 3. Antalet överksridanden av MKN-timme fördelat per tid på dygnet (Kungsgatan, Uppsala).
I Göteborg har halterna av $\mathrm{NO}_{2} \mathrm{i}$ de två gaturum där kontinuerliga mätningar genomförs haft markant fler överskridanden än tidigare år, vilket inte kunde förutses från tidigare mätningar. Även t.ex. Umeå och Malmö har rapporterat höga kvävedioxidhalter under de senaste två åren.

De skäl som har angetts till de högre halterna av NO_{2} är ökad förbränning för uppvärmning, samt stabilare väderlek vid kallt väder. I Årsrapporten för luftkvalitén i göteborgsområdet 2010 anges att de ovanligt många överskridanden av miljökvalitetsnormerna för NO_{2} var att 2010 började och slutade med en mycket kall vinter (s12). När även 2011 års halter har jämförts ser vi att 2010 var ett ovanligt år även avseende NO_{2}, men att MKN fortfarande överskrids för både dygn och timme under 2011.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

En del av förklaringen till Uppsalas höga kvävedioxidhalter kan alltså vara väderleken under 2010, samt även den ökande andelen dieselfordon i Sverige.

5 Âtgärder för Uppsalas luftkvalitet

De vanligaste åtgärderna för att komma tillrätta med luftkvalitetsproblem i stadmiljö är att begränsa eller på andra sätt påverka trafiken, i och med att trafiken ofta är den stora källan till luftföroreningarna. Samtidigt påverkas invånarnas bekvämlighet och framkomlighet. I denna analys ingår endast åtgärdernas effekter på luftföroreningssituationen.

5.1 Atgärdsplan Uppsala

Åtgärdsprogram sattes in i slutet av 2006, och 2009 kompletterade Uppsala kommun åtgärdsprogrammet med en åtgärdsplan för 2009-2010. Detta har, tillsammans med övrig kommunal planering, inneburit stora förändringar i trafikströmmarna kring centrala Uppsala och Kungsgatan, vilket försvårar analysen av orsakerna till de halter som har uppmätts.

Den åtgärdsplan som gäller i Uppsala just nu (Åtgärdsplan för 2009-2010) har föreslagit fyra huvudåtgärder; hastighetssänkning, begränsningar av trafiken, miljözon för tyngre fordon samt utökad information och marknadsföring. Utöver dessa åtgärder ska även arbetet med redan påbörjade åtgärder fortsätta och uppföljningen förbättras.

- Hastighetssänkning har genomförts i innerstaden genom att en 30-zon införder den 12 Maj 2010. Zonen finns främst väster om Kungsgatan, i direkt anslutning till Kungsgatan. Kungsgatan ingår inte i 30-zonen.
- Begränsningar av trafiken har i princip genomförts, då 30-zonen och dubbdäcksförbudet begränsar trafiken. Det har även varit en hel del påverkan på trafiken av olika avstängningar främst på grund av byggnation kring resecentrum. Strandbodgatan har också öppnats igen vilket beräknas avlasta Kungsgatan.
- Miljözon för tunga dieseldrivna fordon över 3,5 ton inom en del av innerstaden kommer att införas först $1 / 12013$. Denna miljözon kommer att inkludera all trafik med dispenser/undantag endast baserat på trafikförordningen (1998:1276) 4 kap. $23 \S$. Miljözonen avgränsas av Luthagsesplana-den-Väderkvarnsgatan-Strandbodgatan-Östra Ågatan-Munkgatan-Nedre Slottsgatan-Drottninggatan-Övre Slottsgatan-S:t OlofsgatanKyrkogårdsgatan inklusive avgränsningsgator.
- Information och marknadsföring har inriktats på att informera om dubbdäcksförbudet och 30-zonen, vilket har gett en del fokus på luftkvalitetsproblemen i Uppsala. Även utökad marknadsföring av busstrafiken har genomförts.
- I Uppsala har man bland annat arbetat med att förbättra kollektivtrafiken, och en stor del av busstrafiken går via Kungsgatan vid mätstationen. Olika trafikförändringar kring resecentrum har också skett, vilket direkt kan påverka mätstationen på Kungsgatan. Att mäta alla dessa trafikströmmar, som

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

ändras ofta, samt sedan beräkna hur dessa förändringar kan ha påverkat mätresultaten på Kungsgatan har inte ansetts effektivt.

- Dubbdäcksförbud infördes på delar av Kungsgatan och Valsalagatan den 1 oktober 2010.

Detta sammantaget gör att utvärderingen i år har fokuserats på vissa delar av påverkan som tydligare har kunnat studeras, såsom hur tung trafik och busstrafik påverkar halterna främst i relation till en eventuell miljözon. Hur dubbdäcksförbuden i andra städer har utvärderas har sammanfattats nedan.

5.2 30-zonen

Figur 4. 30-zonen i centrala Uppsala infördes den 12 Maj 2010 (gul markering) samt dubbdäcksförbudet (blå markering). (bild från uppsala.se)

Även 30-zonen borde ha gett minskade halter av $\mathrm{PM}_{10} \mathrm{i}$ området. Denna zon har också funnits under en större del av 2010 (start 12 maj 2010). Ateruppvirvling av partiklar från vägbanan minskar med minskande hastighet.
30-zon infördes den 12 Maj 2010 på ett antal gator i innerstaden, och visas i Figur 4. Den gäller inom Kyrkogårdsgatan, Skolgatan, Sysslomansg-S:t Olofsg-Kungsgatan (inte 30 på den)-Strandbodg-Ö Ågatan-Munkg-N Slottsg (inte södra delen)-Övre Slottsg-S.t Olofsgatan. Kungsgatan utgör alltså gräns för 30-zonen, men ingår inte i den.

Sänkt hastighet till 30 km per timme ger, om man bortser från inbromsningar och andra effekter, en viss ökning av utsläppen av kväveoxider och avgaspartiklar, me-

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

dan slitage och uppvirvlingspartiklar, vilka utgör den stora delen av PM_{10}, minskar. Denna effekt skulle alltså kunna vara en av orsakerna till de uppmätta halterna, med högre halter av kvävedioxid och lägre halter av PM_{10}. Denna påverkan kan bara vara en begränsad del av förklaringen till de uppmätta halterna under 2010.

5.3 Miljözon

Med miljözon menas ett område där det finns inskränkningar för vilka fordon som får röra sig. De i Sverige nu gällande reglerna för miljözon ställer krav på tunga fordon, det vill säga lastbilar och bussar med en vikt på 3,5 ton eller mer. Det finns dock på förslag från transportstyrelsen att införa olika klasser av miljözoner med restriktioner också för övrig trafik. Bestämmelserna är samma för alla svenska städer, medan kommunen med stöd av trafikförordningen bestämmer vilka områden som ska innefattas av miljözonen. Miljözon för tunga dieseldrivna fordon innefattar följande regler:

- Alla tunga dieseldrivna lastbilar och bussar är tillåtna att köra i miljözon i minst 6 år från första registrering oavsett registreringsland.
- Fordon som tillhör Euroklass 2 och 3 făr färdas i miljözon i 8 år. I båda fallen räknas tiden från första registreringsåret.
- Fordon som tillhör Euroklass 4 får köra i miljözon till och med 2016, oavsett registreringsår. Detta gäller även de fordon vars motorer har anpassats för att uppfylla emissionskraven för denna miljöklass.
- Fordon som tillhör Euroklass 5 får färdas till och med 2020, oavsett registreringsår. Detta gäller även de fordon vars motorer har anpassats för att uppfylla emissionskraven för denna miljöklass.

Undantag görs för vissa typer av fordon t.ex. räddningstjänst och polis. Bestämmelserna om miljözon finns i förordning om ändring i trafikförordningen (2006:1208). I Europa finns idag 220 miljözoner, varav 6 stycken i Sverige.

Nedan nämns vilka effekter införandet av miljözon haft i andra städer, som likt Uppsala har eller har haft problem med förhöjda halter av kväveoxider i utomhusluften. En möjlig effekt som inte har diskuterats är hur miljözonen kan påverka områdena direkt utanför miljözonen. Det kan ske en förbättring även utanför, om miljöbilar används över ett större område än zonen, men å andra sidan kan man också välja att använda äldre fordon utanför zonen. Dessa möjligheter har dock inte studerats här.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

5.3.1 Miljözon i Uppsala

Figur 5. Andelen tung trafik vid fem halvtimmesmätningar på olika gator i Uppsala kommun.

Andelen tung trafik på Kungsgatan är hög; mellan 15 och 18%, jämfört med mindre än 6% på de övriga uppmätta gatorna i Figur 5. Ett miljökrav på den tunga trafiken skulle således kunna påverka luftkvaliteten vid Kungsgatan avsevärt. En stor andel av den tunga trafiken på Kungsgatan utgörs av busstrafik vilket kan påverka antalet tillgängliga styrmedel.
Arbetet med en miljözon pågår. Föreslagen avgränsning av zonen visas i Figur 6. Miljözonen kommer sannolikt att innebära krav på en viss EURO-klass för tung trafik. Den kartläggning av tunga fordon i centrum som finns med i åtgärdsplanen har inte genomförts eftersom den inte ansågs nödvändig för att kunna fatta beslutet om miljözon. Uppföljning och effekt av genomförandet făr i stället ske via de löpande mätningarna.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Figur 6. Den föreslagna miljözonen, där tung trafik sannolikt kommer att få krav på miljöklassning. Siffrorna visar mätplatserna för trafikräkningen i figur 5;
$1=$ Kungsgatan, $2=$ Väderkvarnsgatan, $3=$ Svartbäcksgatan, 4=Övre Slottsgatan, $5=$ Dragarbrunnsgatan.

5.3.2 Busstrafikens påverkan på luftkvaliteten

En detaljstudie av hur busstrafiken påverkar halterna av kvävedioxider vid mätstationen på Kungsgatan har genomförts som ett studentarbete på Uppsala universitet, och redovisas kort nedan. Enligt detta arbete beror de höga halterna av NO_{2} i stor utsträckning på den stora mängden busstrafik förbi mätstationen.

Personbilar utgör den stora andelen av trafiken på Kungsgatan, medan de står för endast en liten del av utsläppen i och med att avgasutsläppen per fordon är överlägset högre för buss och lastbil, se figur 7 och 8, där dygnsfördelningen av trafikmänden, samt de beräknade utsläppen av kväveoxider fördelat på trafikslag. Knappt en tredjedel av de totala utstäppen av NOx vid mätstationen på Kungsgatan beräknas komma från lastbilar, medan knappt två tredjedelar beräknas komma från busstrafiken. Knappt en tiondel släpps ut av personbilarna. En normal dygnsfördelning av kvävedioxidhalterna (Figur 8) gör gällande att halterna i stort följer de beräknade utsläppen från figur 8 .

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Dygnsfördelning av fordonstyper i antal

Tid (h)

Figur 7. Antal fordon i respektiver trafikslag per timme under ett vardagsdygn, baserat på mätningar, antaganden och beräkningar.

Figur 8. Utsläpp av kväveoxider från respektiver trafikslag per timme under ett vardagsdygn, baserat på mätningar, antaganden och beräkningar.

Om miljözon skulle införas, och den skulle gälla all tung trafik, skulle utsläppen av NOx minskas med en fjärdedel. Det har diskuterats att bussar i linjetrafik skulle undantas från miljözonsreglerna. Busstrafikens utsläpp skulle dock minskas med nästan 40%, varav den största påverkan skulle ske för regiontrafiken, i och med att andelen äldre bussar är klart högre där än i stadstrafik (Studentrapport, 2011). Resultatet skulle bli i samma storlekordning om man istället införde biogasbussar över hela bussparken.
Bussarnas miljöklass har tagit fram och beräkningar på emissionerna visar att bussarna står för den större delen av NOx-utsläppen kring Kungsgatan. Enligt studenterna beräkningar skulle ett krav på minst EURO-klass 4 på alla fordon medföra en minskning av NO_{2}-utsläppen vid Kungsgatan på $9,2 \mathrm{~kg} / \mathrm{km}$, eller ca en

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

fjärdedel av utsläppen. Detta är mer än dubbelt så mycket som alla personbilar släpper ut i dagsläget.

5.3.3 Miljözon i Stockholm

Stockholm kunde efter införandet av miljözonen fastställa en minskning av kvävedioxidbelastningen med 1-8\% (Stockholms stad, 2008).

5.3.4 Miljözon i Göteborg

Göteborg införde en miljözon år 1996, som utvärderades 2006. Man har där gjort beräkningar med hjälp av en modell för att undersöka effekterna av miljözonen. Både beräkningar av totala utsläpp med miljözon och utan miljözon gjordes och dessa jämfördes sedan. Resultatet blev att utsläppen av kväveoxider (NOx) minskade med 7.8%. Utöver utsläppsminskningen på grund av en miljözon så har antagligen en "naturlig" minskning skett då miljöklassen på övriga fordon, som inte omfattas av miljözonens regler, förbättrats sedan 1996 (Göteborgs stad, 2006).

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

5.4 Dubbdäcksförbud

Figur 9. Dubbdäcksförbud infördes 1 oktober 2010, röd markering enligt kartan. (bild från uppsala.se)
Dubbdäcksförbud infördes den 1 oktober 2010 på Kungsgatan samt en del av Vaksalagatan, med vissa undantag och dispenser. Antalet fordon, samt andelen dubbdäck, har räknats på ett antal gator under en halvtimme i en rikting per mätning. Mätningarna har pågått sedan mitten av november och avslutas i början av april 2011. Andelen dubbdäck på Kungsgatan, där dubbdäcken är förbjudna, ligger under 20% och ibland även under 10%. Detta kan jämföras med Övre Slottsgatan och Svartbäcksgatan som ligger på ett större avstånd från Kungsgatan, och har ca $60-90$ \% dubbdäck. Däremellan finns Dragarbrunnsgatan och Väderkvarnsgatan där andelen ser ut att ha påverkats av förbudet på Kungsgatan, se detaljer i Årsrapport 2010.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Figur 10. Andelen fordon med dubbdäck vid manuell räkning under ett antal dagar under dubbdäcksförbudets första år.

5.5 Flyttning av trafik

Trafiken har förändrats i flera steg i och kring Kungsgatan, där mätstationen finns. Detta har skett främst på grund av ombyggnationer av resecentrum, samt mer långsiktigt genom att dubbdäcksförbud har införts på Kungsgatan och 30-zon på gatorna söder om Kungsgatan, vilket främst har resulterat i mindre trafikgenomströmning i området. Busstrafiken har samtidigt centrerats kring Kungsgatan och resecentrum vilket har ökat halterna av NO_{2}, se avsnittet om busstrafiken.

År 2008 genomförtes en så kallad trafiktålighetsutredning. Spridningsberäkningar utnyttjades till att beräkna halterna av NO_{2} och PM_{10} i ett antal gaturum i Uppsala. Från dessa beräkningar kunde sedan den maximala mängden trafik i varje gaturum beräknas under förutsättning att MKN klarades i gaturummen. Detta har varit ett bra verktyg för att styra trafikmängderna i staden. Dock kan beräkningarna behöva uppdateras avseende främst emissioner, samt fördelningen mellan tung trafik och persontrafik.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Figur 11. Trafikflödet över att antal gator i innerstaden under de senaste åren, tillsammans med den trafikmängd som enligt spridningsberäkningar är den maximala för att samtidigt uppfylla miljökvalitetsnormerna.

5.6 Kollektivtrafik

Kollektivtrafiksatsningar som genomförts i Uppsala är en satsning på resecentrum, med stora ombyggnationer som följd. Information har också genomförts, främst relaterat till dubbdäcksförbudet och 30-zonen.

5.6.1 Andra skäl till de uppmätta kvävedioxidhalterna

Ett annat skäl till de ökande kvävedioxidhalterna kan vara att andelen dieselfordon i fordonsflottan ökar. Data från Trafa och SCB som visar på att andelen dieselfordon i Uppsala kommun stigit från 5% år 2006 till 13 \% år 2010. Om man tittar på nybilsregistreringar 2010 är mer än hälften av de nya bilarna dieselfordon, jämfört med 20% år 2006. Detta ger en viss ökning av halterna kring mätstationen (grovt räknat 15% av personbilsutsläppen). Dock är personbilstrafiken enligt studentrapporten inte av avgörande betydelse för halterna, då de endast utgör mindre än 10% av utsläppen.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

6 Slutsats och förslag

Under 2010 har miljökvalitetsnormerna för PM_{10} klarats, och både årsmedlet och dygnspercentilen var de lägsta på 12 år. Alla MKN avseende NO2 överskreds 2010, vilket inte skett varken förr eller senare. Under 2011 klaras årsmedelvärdet för både PM10 och NO2, medan dygn och timme har överskridits för båda ämnena. Detta betyder att partikelhalterna har varit något högre, medan kvävedioxiderna har varit något lägre än 2010.

Vad som direkt kan utläsas av situationen i Uppsala är att 2010 har problemet med ökade halter av kväveoxider gett större problem än partikelhalterna, men att halterna 2011 ligger mer i linje med tidigare mätningar. 2010 kan alltså inte sägas vara ett "normalår" för luftföroreningssituationen i Uppsala.

6.1 Miljözon

Den miljözon som kommer att införas nästa årsskifte föreslås inrättas inkluderar även bussar i linjetrafik ska undantas från zonen. Skälet till detta är att busstrafiken släpper ut en så stor andel av kväveoxiderna kring Kungsgatan, vilket visas i den studentrapport som finns i bilaga till rapporten. Vi ser också att överskridandena av timmedelvärdet för kvävedioxid främst sker med samma dygnsfördelning som busstrafiken, men inte som biltrafiken.

6.2 Slitagepartiklar och återuppvirvling

Den stora källan till PM_{10} är uppvirvlingen av slitagepartiklar och vägdamm. Partikelhalten påverkas av mängden trafik, samt andelen tung trafik (t.ex. busstrafik), på samma sätt som kvävdioxidhalterna. Avseende partiklar är även väderleken av stor betydelse för halterna, i och med att en våt vägbana minskar damningen betydligt, samt en snöbelagd vägbana minskar slitaget av vägen betydligt. Nederbörd minskar halterna. Städning har utnyttjats för att minska halterna av damm, samt dubbdäcksförbud och 30-zon, vilka båda kan ge positiva resultat för partikelnivåerna i omgivningen. Dock har inte dammbindning provats i någon större utsträckning, vilket gjorts både i Göteborg och i Stockholm. Jämförelse med resultaten där rekommenderas.

6.3 Trafik och trafiktålighet

Trafiken har varierat mycket under året, i och med att trafikavstängningar har flyttats i samband med en stor mängd ombyggnationer i området. Även dubbdäcksförbudet och 30-zonen har införts och påverkar både trafikmängd och emissioner. Andelen dieselfordon har ökat under de senaste åren över hela riket, men även inom Uppsala kommun. Svårigheten att följa hur trafiken förändras minskar förståelsen av resultatsambanden för föroreningshalterna på Kungsgatan.
Trafiktålighetsutredningen kan vara ett verktyg där trafikräkning direkt skulle kunna relateras till luftkvalitet. Denna kan dock behöva uppdateras relativt ofta i och med att utvecklingen inom området är snabb. Bland annat påverkas utsläppen per fordon, av både kväveoxider och partiklar, av fordonsparken och eventuella förändringar i

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

hastigheter etc., samt med ny kunskap inom både emissioner och spridning. Avseende partiklar finns också en stor forskningsaktivitet om dubbdäcksemissioner, uppvirvling och andra påverkansmöjligheter å emissionerna. Trafiktåligheten påverkas också starkt av andelen tung trafik, vilket inte har kunnat utläsas ur rapporten.

Satsningen på kollektivtrafik har inte utvärderats i denna studie.

7 Litteratur

Årsrapporten för luftkvalitén i göteborgsområdet 2010 - R:2011:10
Luftkvalitet i Stockholms och Uppsala län samt Gävle och Sandvikens kommuner, Kontroll och jämförelser med miljökvalitetsnormer år 2010 LFV 2011:2

Sjödin mfl (2010) Wear particles from road traffic - a field, laboratory and modeling study, IVL B1830
Johansson (Dec 2006) Betydelse av dubbdäck mm för PM10 halterna längs vägarna, Institutionen för tillämpad Miljövetenskap, Stockholms Universitet, ITM-rapport 158

Johansson m fl (Juni 2011) Vad dubbdäcksförbudet på Hornsgatan har betytt för luftkvaliteten, SLB analys, Miljöförvaltningen i Stockholm, SLB-2:2011
WSP Analys \& Strategi (2011a) PM - Uppföljning av dubbdäcksförbudet på Frigga- och Odinsgatan i centrala Göteborg efter första vintersäsongen 2011/2011, 2011-05-11

WSP Analys \& Strategi (2011b) PM - Beskrivning av förutsättningar för dubbdäcksavgift enligt norsk förlaga i centrala Göteborg, 2011-05-12

Wikipedia om EURO-normer
Luftguiden (2011) Handbok om miljökvalitetsnormer för utomhusluft, Handbok 2011:1, Naturvårdsverket

```
https://umea.se/ 2011-12-20 (PM10-halter)
```

Persson (2011) Luftkvaliteten i Sverige 2010 och vintern 2010/11 Resultat från mätningar inom Urbanmätnätet, IVL B1996

Uppsala kommun (2009) Åtgärdsplan för att klara miljökvalitetsnormerna för kvävedioxid och partiklar i Uppsala 2009-2010
Uppsala kommun (2011) Uppföljningsrapport av åtgärdsprogram för miljökvalitetsnormer för utomhusluft i Uppsala för 2010

Uppsala Universitet, Inst. För Geovetenskaper (2011) Trafikens inverkan på NO2halten på Kungsgatan i Uppsala (bilaga 2)
Johansson, Norman och Burman (2011) Vad dubbdäcksförbudet på Hornsgatan har betytt för luftkvaliteten. SLB 2:2011, Miljöförvaltningen i Stockholm

Sundbom Rolf (2011-2012) kontinuerliga diskussioner och idéer

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-02-21		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

8 Bilagor

A. Om dubbdäcksförbud och emissioner
B. Miljözonen i Trafikförordningen
C. Ârsrapport 2010
D. Studentrapport om bussar och NO2
E. Redovisning av åtgärder för partiklar

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Bilagor
A. Om dubbdäcksförbud och emissioner
B. Miljözonen i Trafikförordningen
C. Ârsrapport 2010
D. Studentrapport om bussar och NO2
E. Redovisning av åtgärder för partiklar

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

A. Dubbdäck

A. 1 Dubbdäcksförbud i Göteborg

Figur A1. Dubbdäcksförbudet i Göteborg gäller Odinsgatan och Friggagatan nära järnvägsområdet i centrala Göteborg, markerat i kartan.

Figur A2. De rödmarkerade gatorna kan vara aktuella för att sprida dammbindningsmedel. Centralt i bilden finns Odinsgatan-Friggagatan där dubbdäcksförbudet gäller.
Dubbdäcksförbudet i Göteborg inleddes 1 oktober 2010, och en säsong har hittills utvärderats. Den är som i övriga fall mycket snörik, och även påverkade av stora ombyggnationer i området. Risken att en stor del av partiklarna i området kan härledas till järnvägsområdet är överhängande.
En jämförelse mellan en lokal mätstation på Friggagatan/Odinsgatan (dobbdäcksförbudet) och tre andra mätstationer i Göteborg under 21 februari och 15 april visar ingen påverkan på halterna av PM_{10} på de olika stationerna. Resultatet har dock påverkats av väderläget med mycket snö och av att man under våren sprider en hel del dammbindningsmedel på Friggagatan/Odinsgatan för att minska problemet med

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

höga PM_{10}-halter, jämför figur A2 (WSP, 2011a). Man har också saltat inom förbudszonen för att minska risken för halka.

Friggagatans trafik har minskat med knappt 30 \% mellan 2010 och 2011 (mätning under vecka 5-6), medan trafiken på en del kringleder har ökat med 3-5\%. Det finns ingen självklar alternativ väg till Friggagatan, och det är svårt att se hur trafikströmmarna har flyttat sig. Det har också skett en del ombyggnation i gaturummet på Friggagatan/Odinsgatan vilket kan ha bidragit till att minska trafiken där.

Andelen dubbdäck på Friggagatan/Odinsgatan har uppmätts till drygt 20%, medan mätningen på Hedens parkeringsplats i centrala Göteborg (som har mätts avseende dubbdäck under 11 år) hade ca 55% (WSP, 2011a). På Heden har dubbdäcksanvändningen minskat under flera år, utan någon form av regleringar eller avgifter, från ca 80% under första delen av 2000-talet, till knappt 60% vintern 2010-2011.

Hittills har man alltså inte kunnat säkerställa att andelen dubbdäck av trafiken har resulterat i lägre halter av PM_{10} på Friggagatan i Göteborg.

A.2. Dubbdäcksförbud i Stockholm

Även om man har kunnat räkna ut att emissionerna av partiklar har minskat om man använder tillgänglig information om emissioner från dubbdäckslitage har mätningar av halter inte med säkerhet kunnat bekräfta att halterna på Hornsgatan har minskat på grund av dubbdäcksförbudet (Johansson $\mathrm{m} \mathrm{fl}, 2011$). Skälet till detta är främst den stora variationen i halter på grund av ett flertal andra samtidiga förändringar.

Trafiken på Hornsgatan har minskat sedan införandet av dubbdäcksförbudet, med stor sannolikhet på grund av förbudet. Efterlevnaden av dubbdäcksförbudet är heller inte fullkomlig, ca 30% av trafiken har dubbdäck under 2011 (Johansson m fl, 2011).

För att utvärdera resultatet av dubbdäcksförbudet har man i Stockholm använt en modell där effekter av andra parametrar har kunnat rensas bort från de uppmätta halterna (såsom t.ex. väderleken). Denna modell pekar på att dubbdäcken kan vara en viktig del av problematiken (Johansson m.fl., 2011), och slutsatsen hos SLB (Stockholms och Uppsala läns Luftvårdsförbund) är också att dubbdäcksförbudet ger en luftkvalitetshöjning kring Hornsgatan.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

Figur A3. Dubbdäcksförbudet i Stockholm gäller Hornsgatan på Södermalm, markerat i rött i kartan.

A.3. Vad vet vi om dubbdäckens effekter?

Dubbdäcken river upp en hel del av vägbeläggningen och de större utsläppen av vägslitagepartiklar vid dubbdäcksanvändning har kvantifierats i ett flertal situationer, främst vid VTI, Sveriges Väg och transportforskningsinstitut, där laboratorieförsök visar upp till fyra gånger högre utsläpp med dubbdäck än med vinterdäck utan dubb. Slitaget av vägbeläggning består till stor del av partiklar som är större än PM_{10} och som faller ned i närheten av vägen och förorenar mark och vatten i närheten. Dessa ingår alltså inte i de partikelutsläpp som vi anger i denna rapport, vilken riktar sig mot luftkvalitet.
Emissionerna av vägdamm sker främst då vägbanan är torr. Då den är våt sliter dubbdäcken mer på vägbanan, vilket ger upphov till en större mängd partiklar som kommer att emitteras när vägbanan torkar upp. Detta gör att vägens fuktighet är av stor betydelse för emissionerna. Vid snö och is är det inte vägbanan som slits, utan dubbdäcken river upp isytan och ger ett bättre grepp för alla fordon, så länge isen ligger på vägbanan.

Vid vägslitage kan vägbanan bli spårig och risken för vattenplaning öka, samt partikelhalterna i den omgivande luften öka. Detta betyder att dubbdäcken motverkar

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

den polering som vägbanan utsätts för av fordonens däck. Poleringen innebär att vägarna blir blanka och hala på grund av att däcken polerar vägbanan. Vi i Norden har mindre problem med polering av vägbanor än många andra länder, där man ofta slipar vägbanorna för att komma tillrätta med sommarhalkan. Man ytbelägger vägarna oftare på grund av spårigheten och kan alltså spara en del tid och arbete på att inte använda dubbdäck. \AA andra sidan är det förstås också en diskussion om trafiksäkerheten.

A.4. Emissionsfaktorer

Emissionsfaktorer beskriver hur stor mängd föroreningar som sprids i luften per fordon och körd kilometer. Emissionsfaktorerna används för att relatera trafikarbetet till utsläpp, så att man kan beräkna totala utsläpp från trafik, samt halter av luftföroreningar kring trafiken. Emissionsfaktorerna kan beräknas på många olika sätt, och påverkas ofta av många olika faktorer. De emissionsfaktorer som används är antingen momentana eller medelvärden över året. Dessa skiljer sig åt en hel del i och med att dubbdäcken endast används under en begränsad tid, samt att för främst partiklar är t.ex. vägbanans fuktighet eller snö/istäcke av största betydelse för spridningen av partiklarna till luften.
Från laboratorieundersökningar vid VTI, Linköping, samt i Finland finns studier som mäter slitagepartiklar från vägbana och däck. De båda labben ger olika resultat, där Finland har slutit sig till att det är sandningen på vägbanan som är orsak till slitagepartiklarna, medan VTI anser att det är dubbdäcken som är problemet. Detta gör att de nordiska länderna använder olika metoder att begränsa partikelhalterna.
Emissionsfaktorer har uppskattats med olika metoder, och jämförelser med mätningar i utomhusmiljö görs kontinuerligt. Utomhusmätningar ger en uppskattning av vad fordonen ger upphov till i partikelutsläpp, men kan sällan skilja på vad som är direktutsläpp och vad som är återuppvirvling av gammalt material på vägen. Halten partiklar kring vägen påverkas alltså både av den aktuella dubbdäcksandelen och av den tidigare. Andelen dubbdäck varierar också främst avseende tid på året, vilket begränsar datamängden.

För att beräkna emissionsfaktorer från vägkantsmätningar finns ett flertal metoder. De variabler man främst behöver hantera är relationen mellan uppmätt halt och källan (dvs trafikslag och trafikmängd), halterna i bakgrundsluft och utspädningen av luften. För vägdamm krävs också vägbanans fuktighet och andelen dubbdäck etc. I Stockholm har man anpassat en modell till mätdata för att studera de faktorer som påverkar PM10-halterna i gaturummet. Denna modell ger en uppskattning av emissionsfaktorerna.

De önskade effekterna av dubbdäcksförbud är att minska halterna av partiklar i luften, samt att minska vägslitaget och bullret från trafiken. Det man påverkar är förstås dubbdäckandelen på trafiken inom dubbdäcksförbudet, men även dubbdäcksandelen i områdena kring förbudet. Inom dubbdäcksförbudszonen påverkas också normalt total trafikgenomströmning (bättre luftkvalitet lokalt, men också begränsad framkomlighet för bilisterna). En oro i sammanhanget är att antalet trafikolyckor på grund av halka kan öka.

Uppdragsnr: 10148462	Analys av luftkvalitet och åtgärder 2011	
Daterad: 2012-03-15		
Reviderad:		
Handläggare: Sara Janhäll	Status:	

B. Miljözon i Trafikförordningen

Bestämmelser om miljözoner

22 § I en miljözon får sådana tunga bussar och tunga lastbilar som är utrustade med teknik för drift endast med diesel föras endast om första registrering, oavsett första registreringsland, skett under de senaste sex åren, innevarande år oräknat.

Med diesel avses i detta avseende sådant dieselbränsle som får saluföras enligt drivmedelslagen (2011:319). Förordning (2011:350).

Införd 2006-12-01 gm SFS 2006:1208 pdf, ikraft 2007-01-01
Rubrik 2006-12-01 gm SFS 2006:1208-pdf, ikraft 2007-01-01
Ändrad 2011-04-12 gm SFS 2011:350-pdf, ikraft 2011-05-01
23 § Följande undantag gäller från det förbud som anges i 22 §:

1. Fordon vars motor vid tidpunkten för typgodkännande, registrering eller ibruktagande uppfyllde minst de emissionskrav som anges i rådets direktiv $88 / 77$ /EEG av den 3 december 1987 om tillnärmning av medlemsstaternas lagstiftning om ătgärder mot utsläpp av gasformiga föroreningar från dieselmotorer som används i fordon, i dess lydelse enligt rådets direktiv 91/542/EEG, rad B i tabellen i avsnitt 6.2.1 i bilaga 1, får föras i miljözon under en period av åtta àr räknat från första registreringen, registreringsåret oräknat.
2. Fordon vars motor vid tidpunkten för typgodkännande, registrering eller ibruktagande uppfyllde minst de emissionskrav som anges i Europaparlamentets och rådets direktiv 2005/55/EG av den 28 september 2005 om tillnärmning av medlemsstaternas lagstiftning om åtgärder mot utsläpp av gas- och partikelformiga föroreningar från motorer med kompressionständning som används i fordon samt mot utsläpp av gasformiga föroreningar från motorer med gnisttändning drivna med naturgas eller gasol vilka används i fordon, rad B. 1 i tabellerna i punkt 6.2 .1 i bilaga I, får föras i miljözon till och med utgången av år 2016.
3. Fordon vars motor vid tidpunkten för typgodkännande, registrering eller ibruktagande uppfyllde minst de emissionskrav som anges i Europaparlamentets och rådets direktiv 2005/55/EG, rad B. 2 eller rad C i tabellerna i punkt 6.2.1 i bilaga I, får föras i miljözon till och med utgången av ar 2020.
4. Fordon vars motor har anpassats för att uppfylla de emissionskrav som anges i punkten 2 får föras i miljözon till och med utgången av år 2016.
5. Fordon vars motor har anpassats för att uppfylla de emissionskrav som anges i punkten 3 får föras i miljözon till och med utgången av år 2020. Förordning (2006:1208).

Införd 2006-12-01 gm SFS 2006:1208 pdr, ikraft 2007-01-01
24 § Vid färd i miljözon med en sådan tung buss eller tung lastbil som är utrustad med teknik för drift endast med diesel, och som har registrerats för mer än sex år sedan, innevarande år oräknat, skall handlingar medföras som visar vilka emissionskrav som fordonets motor uppfyllde vid tidpunkten för typgodkännande, registrering eller ibruktagande. Detta gäller dock inte om uppgiften kan utläsas ur vad som finns antecknat i vägtrafikregistret.

Vid färd i miljözon med ett fordon vars motor har anpassats enligt vad som anges i $\underline{23} \S 4$ och $\underline{5}$, skall handlingar som visar att fordonet efter anpassningen uppfyllde angivna emissionskrav medföras i fordonet. Förordning (2006:1208).

Uppföljningsrapport av åtgärdsprogram för miljökvalitetsnormer för utomhusluft i Uppsala för 2010

Bakgrund

Länsstyrelsen fastställde den 24 november 2006 (dnr 502-8456-06) Uppsala kommuns förslag till åtgärdsprogram för att klara miljökvalitetsnormerna för partiklar och kvävedioxid. Uppsala kommun kompletterade våren 2009 åtgärdsprogrammet med en åtgärdsplan för 2009-2010 (KSN-2009-0249). Denna rapport hänvisar därför både till det ursprungliga åtgärdsprogrammet och till åtgärdsplanen.

Kopplingar luftkvalitet och folkhälsa

Många studier visar på ett samband mellan höga halter av luftföroreningar och försämrad hälsa. Exponering kan ge effekter både på kort och på lång sikt. Påverkan gäller hjärta, kärl och luftvägar. Mest utsatta är barn och de som redan har problem. För en något mer utförlig beskrivning se bilaga 1 .

Mätningar

Under 2010 har PM_{10} och NO_{2} mätts på Kungsgatan, vilket är en mätstation som har använts under en lång tid. I juli 2007 flyttades mätinstrumentet till nordöstra sidan av Kungsgatan, vid stadshuset. Mätningen har alltså de senaste åren skett i ett dubbelsidigt gaturum till skillnad från den tidigare placeringen i ett enkelsidigt gaturum. Platsen bedöms ha de högsta halterna av PM_{10} och NO_{2} i Uppsala.

Uppsala kommun deltar också i Urbanmätprojekt samordnat av IVL, där den urbana bakgrundshalten mäts i flera kommuner runt om i landet. Syftet med dessa mätningar är bl.a.
att se hur trenden av luft föroreningar förändras, och mätningarna har pågått sedan vinterhalvåret 1986/87. Mätningar sker endast under vinterhalvåret. Urbanmätstationen är placerad vid Stadsbiblioteket enligt de kriterier som IVL använder för sina mätplatser inom urbanmätnätverket.

Nedan redovisas resultaten av mätningarna på båda stationerna och trendanalys genomförs där så är möjligt. Resultaten jämför också med miljökvalitetsnormerna för PM_{10} och NO_{2}, vilka beskrivs tydligare i bilaga 2 , medan mätmetoderna som används beskrivs i bilaga 3 .

Resultat PM ${ }_{10}$

Miljökvalitetsnormen för PM_{10} klaras på Kungsgatan under 2010, både för årsmedelvärdet och för dygnsmedelvärdet. Miljökvalitetsnormen för dygnsmedelvärden på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ klarades varken för år 2008 eller 2009, och både årsmedelvärdet och antalet överskridanden av dygnsnormen har minskat under de två senaste åren, se Tabell 1. Detta visar att arbetet med att sänka PM_{10}-halterna i Uppsala har gett positiva resultat.

Tabell 1: Resultat av PM ${ }_{10}$ mätningar under 2008, 2009 och 2010.

Resultat $\mathbf{P M}_{10}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	MKN
Datatäckning $(\%)$	97	98	98	
Arsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}\right)$	31	28	24	40
Max Dygnsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}\right)$	444	272	261	
90-percentil av dygnsmedelvärde $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)^{*}$	63	57	39	
Antal dygn över $50 \mu \mathrm{~g} / \mathrm{m} 3$	53	43	29	35

* Dygnsmedelvärdet anges som 90-percentil. Det innebär att det 10% av dygnsmedelvärdena är högre än detta värde.

Trend $\mathbf{P M}_{10}$

I Figur 1 och 2 visas trenden av PM_{10} halterna vid urbanmätstationen respektive Kungsgatan. Mätningar av PM_{10} vid urbanmätstationen pågår under vinterhalvåret och anges som periodmedelvärde, och ska visa en urban bakgrund, som inte är utsatt för lokala källor. Halterna ligger därför normalt mycket lägre än i gaturummet Kungsgatan. Urbanmätningarna visar en markant förhöjd halt 2010, vilket troligtvis beror på någon lokal källa. Figur 1 visar att årsmedelvärdet för PM_{10} har sjunkit under 2010. Trenden vid Kungsgatan både för årsmedelvärdet och för dygnsmedelvärdet har varit stabil för de senaste åren. I Figur 2 ser vi att koncentrationen av PM $_{10}$ uppmätt vid urbanmätstationen har ökat mycket under 2010. Detta är sannolikt en mycket lokal situation och beror troligtvis på någon lokal källa, såsom tillagning av brända mandlar på gågatan vid mätstationen eller liknande. Halten av NO_{2} har i och för sig stigit under några år, men inte alls i samma utsträckning som 2010 års PM_{10}-halt. En jämförelse med de timupplösta PM_{10}-halterna från Kungsgatan visar också att det inte finns några enkla förklaringar till de höga PM_{10}-halterna vid urbanmätstationen, om de inte avspeglar en mycket lokal källa.

Partikelhalter vid Kungsgatan

 2010 på Kungsgatan.

* Ej mätt helår. Mätaren avstängd för flytt fr o m 2006-11-26 till 2007-07-18

Figur 2 Medelhalt över vintersäsongen av PM_{10} och NO_{2} vid urbanmätstationen i Uppsala angett i $\mu \mathrm{g} / \mathrm{m} 3$ (se mer i IVL-rapport B-1940). OBS! Troligtvis mycket lokal partikelkälla som ger höga halter 2010.

Resultat NO_{2}

Från och med 2009 har NO_{2} mätts kontinuerligt på en sida av Kungsgatan. Detta har skett vid samma mätstation som PM_{10} för bättre samordning. Innan dess, under 2007 och 2008, mättes NO_{2} med så kallade passiva provtagare från IVL på två platser vid Kungsgatan, vid stadshuset (Nordöstra) och stadsteatern (Sydvästra). Den nya metoden (se bilaga 3) ger högre upplösning än de passiva provtagarna. Det bör dock noteras att de tidigare mätningar gett högre värden på den sydvästra sidan, den som inte mäts idag, se Tabell 2.

Tabell 2: Mätresultat av NO2 mätningar på Kungsgatan under 2007, 2008, 2009 och 2010, samt gällande miljökvalitetsnorm.

Mätresultat $\mathbf{N O}_{\mathbf{2}}\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	MKN
Arsmedelvärde Sydvästra - Stadsteatern	36	40	$*$	$*$	40
Arsmedelvärde Nordöstra - Stadshuset	29	32	33	42	40
Mätmetod	Passiv	Passiv	Aktiv	Aktiv	
Antal dygn > dygnsnormen	$* *$	$* *$	9	40	7
Antal timmar > timnormen	$* *$	$* *$	116	342	175

* Västra sidan mättes inte 2009-2010
** Med passiv mätning går det inte att få dygns- och timmedelvärden.

Kvävedioxid, NO_{2}, som àrsmedelvärde

Figur 3 Arsmedelvärde för NO_{2} uppmätt vid Kungsgatan.

* IVLs diffusionsprovtagare
** IVLs diffusionsprovtagare, samt ny plats Stadshuset och Tingsrätten.
*** timupplöst data, se metodbeskrivning i bilaga 3.

Miljökvalitetsnormen (MKN) för årsmedelvärdet ($40 \mu \mathrm{~g} / \mathrm{m}^{3}$) klaras inte 2010 för nordöstra sidan. På sydvästra sidan kan värdet, om liknande skillnader som tidigare år kvarstår, vara ännu högre. Den högre upplösningen på den nya mätmetoden medför att även dygnsvärden och timvärden kan redovisas vilket inte var möjligt tidigare med den passiva mätmetoden. Tabell 2 visar överskridanden i orange och miljökvalitetsnormerna (MKN) i grönt. År 2007 har skuggats då mätningar inte genomfördes under hela året.

År 2010 överskreds dygnsvärdet 40 dagar på Kungsgatan, jämfört med tillåtna 7 dagar enligt MKN, medan antalet timmar över $90 \mu \mathrm{~g} / \mathrm{m}^{3}$ var 342 timmar, jämfört med tillåtna 175 timmar per år. Redan under 2009 överskreds dygnsnormen, medan timnormen överskreds först under 2010.

Trend NO_{2}

I Figur 3 visas de uppmätta halterna för NO_{2} på Kungsgatan som årsmedelvärde från och med 2000. Tittar man på mätningen vid Stadshuset på den Nordöstra sidan av Kungsgatan, som fortfarande mäts, har halterna nu nått upp i de halter som tidigare har uppmätts på den Sydvästra sidan - Stadsteatern. Mätmetoden har ändrats under tiden, se figurtexten för Figur 3, men det är fortfarande tydligt att halterna har ökat de senaste åren. Detta har skett samtidigt som partikelhalterna, vilka redovisats tidigare, har sjunkit. Skälet till de förhöjda halterna kan till exempel vara ökat antal inversioner på grund av kall väderlek, ökat antal dieseldrivna fordon, ökad andel tung trafik. Dessa skäl är dock inte undersökta för Uppsala i dagsläget.

Halterna som uppmätts vid urbanmätplatsen vid stadsbiblioteket har visat en minskning sedan 02/03, med den lägsta halten under vinterperioden 2007/08, se Figur 4. Sedan dess har dock halten stigit igen.

Figur 4 Vinterhalvårsmedelvärde för NO_{2} uppmätt vid urbanmätplatsen.

Beräkningar - luftkvalitet

Spridningsberäkningar har genomförts med oregelbundna mellanrum under de senaste åren. Dessa beräkningar ger en översikt av halten av luftföroreningar och visar var risk för överskridanden finns. Under perioder av stora förändringar i trafikmiljön, vilket resulterar i stor variation i trafikmängder, körsätt och liknande är det svårt att genomföra rättvisande luftkvalitetsberäkningar. Resultatet av dessa är helt beroende av korrekta trafikmängder och hastigheter. Istället har SLB-analys gjort beräkningar av "trafiktålighet" längs några gatuavsnitt i Uppsala centrum. En sammanställning av dessa beräkningar och trafikräkningar visas nedan, i figur 6.

Senaste genomförda spridningsberäkningar för PM_{10} för år 2008 visar förhöjda halter vid vissa gator, i Uppsala tätort. Enligt dessa beräkningar överskrids dygnsvärdet för miljökvalitetsnormen ($50 \mu \mathrm{~g} / \mathrm{m}^{3}>35 \mathrm{dygn}$) på delar av Kungsgatan och en del av Övre Slottsgatan.

Även för kvävedioxid visar beräkningarna att miljökvalitetsnormen för dygn ($60 \mu \mathrm{~g} / \mathrm{m}^{3}>7$ dygn) överskreds på Kungsgatan 2006. Dessa beräkningar stöds av mätningarna vid Kungsgatan.

Dagsläget i Uppsala

Under 2010 har halterna av partiklar - PM_{10} minskat och ligger nu under miljökvalitetsnormerna både för årsmedelvärdet och för dygnsmedelvärdet. Urbanmätningen har vi bortsett ifrån. En möjlig orsak till de minskade partikelhalterna är dubbdäcksförbudet, hastighetssänkningen och att gatorna har varit snötäckta i större utsträckning.

För kvävedioxid ser det sämre ut. Under 2010 har antalet överskridanden varit mycket högre än 2009, och även årsmedelvärdet är högt. De förhöjda halterna av kvävedioxid kan orsakas av inversion på grund av kyla, ökad mängd tunga fordon och dessas miljöklassning och antal dieseldrivna fordon. Även andel oxidanter i luften, som tex marknära ozon, kan påverka halten av kvävedioxid. Det behövs en särskild utredning om man vill närmare klargöra orsakerna till de förhöjda kvävedioxidhalterna under 2010.

Trafikräkning

Ett viktigt instrument för att förstå skälen luft föroreningshalterna, och vilka åtgärder som krävs för att komma tillrätta med dem, är trafikräkning. Trafikräkning har i Uppsala skett på ett flertal ställen och redovisas i delar nedan.

Figur 5 Trafikflödet över innerstads/centrumsnittet, dvs. trafiken över att antal gator i innerstaden summerad per dygn, under de senaste åren.

För att beskriva trafiken i Uppsala centrum har trafiken på ett antal gator summerats och redovisas för de senaste 10 åren i Figur 5 . Vi ser här att efter två år av ökningar har trenden vänts och 2010 visar trafikminskningar för innerstadssnittet.

Figur 6 Trafikflödet över att antal gator i innerstaden under de senaste åren, tillsammans med den trafikmängd som enligt spridningsberäkningar är den maximala för att samtidigt uppfylla miljökvalitetsnormerna.

Flera andra trafikflöden har mätts upp under ett antal år, och i Figur 6 visas de tre senaste åren för ett urval av gator. Spridningsberäkningar har också använts för att "räkna baklänges" och kontrollera hur mycket trafik ett antal olika gator maximalt kan bära, utan att miljökvalitetsnormerna för varken NO_{2} och PM_{10} överskrids. Dessa beräkningar baseras främst på geometrin för gatorna, såsom hushöjder och gatubredder, och redovisas tillsammans med resultaten från trafikräkning i Figur 6. Denna maximala trafikmängd har beräknats med spridningsmodeller. De gröna staplarna visar årets värden, vilka inte överskrider den maximala mängden på de gator där både beräkningar och mätningar finns tillgängliga. För Övre Slottsgatan överskreds den trafikmängden under både 2008 och 2009 , men i år har fullständinga mätningar tyvärr inte varit tillgängliga för analys. Kungsgatan norr om Bäverns gränd har minskat trafikmängden från 2009, vilket kan vara ett resultat bland annat av dubbdäcksförbudet på Kungsgatan.

Figur 7 Trafikflödet per dygn på att antal gator under de senaste åren.
Sedan E4:an invigdes har en del av trafiken flyttat ut från centrala Uppsala till lederna runt staden. Resultatet av detta arbete kan illustreras med Figur 7, där de stora ökningarna i trafikmängd finns på "Österleden/Bärbyleden Ö rondellen" samt " Almungevägen Ö Tycho H/Ö Viktoria brandstation", medan andra avsnitt ibland har minskat. Byggandet av resecentrum i centrala Uppsala har också påverkat trafiken mycket under året.

Åtgärder

Enligt åtgärdsplanen ska följande åtgärder genomföras under 2010:

- Hastighetssänkning i delar av innerstaden till $30 \mathrm{~km} / \mathrm{h}$
- Begränsad framkomlighet
- Åtgärder för att minska trafikmängden på Kungsgatan ska påbörjas 2009
- Åtgärd som tillkom i Årsrapporten från 2010: Dubbdäcksförbud på del av Kungsgatan och Vaksalagatan 2010
- Uppföljning av dubbdäcksfria gator
- Miljözon för tyngre trafik
- Information och marknadsföring
- Löpande åtgärder enligt Åtgärdsprogrammet.

Hastighetssänkning i innerstaden till 30 km/h

30-zon infördes den 12 Maj 2010 på ett antal gator i innerstaden, och gäller inom Kyrkogårdsgatan, Skolgatan, Sysslomansg-S:t Olofsg-Kungsgatan (inte 30 på den)-Strandbodg-Ö Ågatan-Munkg-N Slottsg (inte södra delen)-Övre Slottsg-S.t Olofsgatan. Kungsgatan utgör alltså gräns för 30 -zonen, men ingår inte i den, se Figur 8.

Figur 8 30-zonen i centrala Uppsala infördes den 12 Maj 2010.

Åtgärder för att begränsa framkomligheten

Strandbodgatan kommer att öppnas för trafik i november/december 2011 vilket kan komma att avlasta Kungsgatan. Trafikmätningar har på Kungsgatan genomförts i tvärsnittet direkt Norr om Bäverns gränd, där trafikmängden har minskat med 30-40 \% under 2010. Mer detaljerade trafikräkningsinsatser har skett avseende dubbdäcksandel, se nedan.

Under året har dubbdäcksförbud införts på Kungsgatan, se Figur 9, vilket har bidragit till en minskad trafikmängd på Kungsgatan. Mer om dubbdäcksförbudet nedan.

Information och marknadsföring

Information och marknadsföring inför införandet av 30-zonen och dubbdäcksförbudet har skett under 2010 i samband med genomförande av åtgärderna.

Även marknadsföring av stadstrafiken har ökat markant, vilket beskrivs inom avsnittet om bussar nedan.

Dubbdäcksfria gator

Figur 9 Dubbdäcksförbud infördes 1 oktober 2010, enligt kartan. (bild från uppsala.se)
Dubbdäcksförbud infördes den 1 oktober 2010 på Kungsgatan samt en del av Vaksalagatan, med vissa undantag och dispenser. Antalet fordon med och utan dubbdäck har räknats på ett
antal gator under en halvtimme i en rikting per mätning. Det totala antalet fordon räknades under en hel timme i båda riktningarna. Mätningarna har pågått sedan mitten av november och kommer att avslutas i början av april. Andelen dubbdäck visas i Figur 10, där Kungsgatan, där dubbdäcken är förbjudna, har dubbdäcksandel under 20% och ibland även under 10%. Detta kan jämföras med Övre Slottsgatan och Svartbäcksgatan som ligger på ett större avstånd från Kungsgatan, och har ca 60-90 \% dubbdäck. Däremellan finns Dragarbrunnsgatan och Väderkvarnsgatan där andelen ser ut att ha påverkats av förbudet på Kungsgatan.

Figur 10 Andelen dubbdäck av den uppmätta trafiken på olika gatuavsnitt.

Miljözon

Arbetet med en miljözon pågår och införs från 1 januari 2012 enligt planen. Föreslagen avgränsning av zonen visas i Figur 11. Miljözonen kommer sannolikt att innebära krav på en viss EURO-klass för tung trafik. Bussar undantas enligt förslaget. Den kartläggning av tunga fordon i centrum som finns med i åtgärdsplanen har inte genomförts eftersom den inte ansågs nödvändig för att kunna fatta beslutet om miljözon. Uppföljning och effekt av genomförandet fảr i stället ske via de löpande mätningarna.

Figur 11 Den föreslagna miljözonen, där tung trafik sannolikt kommer att få krav på miljöklassning.

Figur 12 Andelen tung trafik vid fem halvtimmesmätningar på olika gator i Uppsala kommun.
I och med att andelen tung trafik på Kungsgatan är mellan 15 och 18%, jämfört med mindre än 6% på de övriga uppmätta gatorna i Figur 12 skulle miljökrav på den tunga trafiken kunna påverka halterna vid Kungsgatan avsevärt. I och med att en stor andel av den tunga trafiken på Kungsgatan utgörs av busstrafik kan det naturligtvis uppstå ett problem med ett eventuellt undantag från miljözonkraven för busstrafiken.

Löpande åtgärder

Busstrafiken

Under hösten 2009 arbetade gatu- och trafikkontoret tillsammans med UL och UB fram en marknadsplan för stadsbuss, som har uppdaterats under 2010. Marknadsplanen innebär fokus på information och marknadsföring och att betydligt mer resurser läggs på info och marknadsföring än historiskt. I augusti 2010 introducerades den mjuka linjen som ersättare till flex- och närlinjen, detta skedde med en stor kampanj.

Harmonisering sker av region och stadstrafiken vilket inneburit likartade regler för hundar och åldersgränser för ungdomsbiljetter. Åldersgränserna på stadstrafiken höjdes från 16 till 19 år och seniorkort infördes på stadstrafiken, allt enligt marknadsplanen. Alla dessa förändringar föregicks av informations- och marknadskampanjer. Som utvisas av Figur 13 har resandet under året ökat med drygt en miljon resor eller $9,4 \%$ jämfört med 2009. Antalet primärresor innebär att resenärer endast räknas med då de startar sin resa och inte då de byter mellan olika linjer, vilket ger en mer rättvisande bild av resandemängderna.

Figur 13 Antal primärresor i stadstrafiken (primärresor ger en mer rättvisande bild än totalt antal resor eftersom inte alla övergångar registreras).

Gatustädning

Gatustädningen har utökats varje år de senaste åren. Främst har man dammsugit upp partiklarna med en inhyrd maskin som har använts regelbundet. I oktober 2010 köptes också en spolmaskin in som kommer att användas regelbundet för våtrengöring av vägbanan. Resultatet av den utökade städningen är svår att se genom att flera åtgärder har genomförts samtidigt, men partikelhalterna är 2010 under miljökvalitetsnormerna i Uppsala, Kungsgatans mätstation.

Övrigt

Arbetet med att förbättra kringleden kring Uppsala har i stort avslutats under 2010. Fler sträckor med dubbla filer och fler cirkulationsplatser har ökat framkomligheten på förbifarten under året som gått.

Slutsats

Halterna för PM_{10} har sjunkit sedan 2008, och för första gången sedan mätningarna startade har dygnsnormen klarats, genom att antalet dagar med överskridande endast var 29 av tillåtna 35 dygn 2010. Mätdata från urbanmätnätet har inte ingått i analysen. Om minskningen beror på de åtgärder som gjorts eller på den snörikare vintern är i dagsläget omöjligt att säga, dock har andelen dubbdäck på trafiken på Kungsgatan minskat till ca 10-20 \% efter införande av dubbdäcksförbud. På andra gator i Uppsala är andelen dubbdäck ca 70%. Kungsgatan ingår inte i den 30-zon som har införts i Uppsala centrum under 2010.

Kvävedioxidhalterna på Kungsgatan har samtidigt ökat, av ett skäl som ännu inte kunnat fastställas. Halten överskrider miljökvalitetsnormen för dygnsmedelvärde 40 dygn under året, mot tillåtna sju dygn. Under 2009 var antalet överskridanden 9 dygn. Årsmedelvärdet för 2010 var $42 \mu \mathrm{~g} / \mathrm{m}^{3}$ mot tillåtna $40 \mu \mathrm{~g} / \mathrm{m}^{3}$.

Vidare analyser kommer alltså att göras under 2011. Parallellt med dessa fortsätter arbetet i linje med åtgärdsprogrammet och åtgärdsplanen.

Bilagor

1. Hälsoeffekter av höga halter PM_{10} och NO_{2}
2. Miljökvalitetsnormer (MKN)
3. Beskrivning av mätningar och mätmetoder för PM_{10} och NO_{2}.
4. Krav på mätplats i gaturum, IVLs utredning

Trafikens inverkan på NO_{2}-halten på Kungsgatan i Uppsala

Institutionen för Geovetenskaper

	Dokumenttyp W-11-10/S-01	Soälvständigt arbete i miljö- och vattenteknik 15 hp
Satum 110524	Ersätter	
	Författare Camilla Andersson, Johanna Berg, Sofie Bydell, Stefan Carlsson, Carolin Landström, Tove Lindblom, Magnus Philipson, Erik Ribeli, Jonas Robertsson	
Handledare Conny Larsson	Rapportnamn Slutrapport Luftkvalitet - Projekt 10	

Referat

Under de senaste åren har man i centrala Uppsala haft problem med luftkvaliteten och de miljökvalitetsnormer som finns för kvävedioxid, NO_{2}, har inte kunnat uppfyllas. För att förbättra luftkvaliteten krävs det kännedom om föroreningarnas källor, samt vilka åtgärder som behöver vidtas för att luftkvaliteten åter ska uppfylla miljökvalitetsnormerna. Vägtrafiken står för en stor del av utsläppen som bidrar till att öka NO_{2}-halten. I detta projekt har samband mellan vägtrafik och NO_{2} undersökts. Även inverkan på halten NO_{2} från vissa väderparametrar har studerats. Utifrån analys av klimat- samt trafikdata påvisas i denna rapport att bussarna är den största NO_{x}-källan på Kungsgatan i Uppsala samt att atmosfärens tillstånd bidrar till att höja/sänka NO_{2}-halterna genom att reglera dess transportmekanismer. En teoretisk beräkning visar att införande av en miljözon kan minska NO_{x}-emissionerna från tung trafik på Kungsgatan med ca 25%.

NYCKELORD:

Luftkvalitet, $\mathrm{NO}_{\mathrm{x}}, \mathrm{NO}_{2}$, Uppsala, väder, miljözon, miljökvalitetsnorm.

Abstract

In recent years the city center of Uppsala has experienced problems with air quality and the Environmental Quality Standards existing for nitrogen dioxide, NO_{2}, have not been fulfilled. To improve air quality it is necessary to acknowledge the main sources of the pollution and put forward appropriate actions in order to lower these levels. Road traffic accounts for a large quota of the emissions contributing to exceeding NO_{2} levels. In this project the NO_{2}-concentration's dependence of traffic is studied, as well as the impacts of a number of certain weather parameters. Based on analysis of climate and traffic data, buses are pointed out as the largest NO_{x} source on Kungsgatan in Uppsala and the state of the atmosphere, by regulating the transport mechanisms, is concluded as a main cause to exceeding values on certain days. A theoretical calculation shows that the introduction of an environmental zone could reduce NO_{x} emissions from heavy vehicles on Kungsgatan by approximately 25%.

Keywords:

Air quality, $\mathrm{NO}_{\mathrm{x}}, \mathrm{NO}_{2}$, Uppsala, weather, environmental zone, Environmental Quality Standards

Förord

Denna rapport har tagits fram inom ramen för kursen Självständigt arbete i miljö- och vattenteknik 15 hp på civilingenjörsutbildningen i miljö- och vattenteknik i Uppsala. Arbetet har genomförts av 9 civilingenjörsstudenter i samarbete med Uppsala Kommun och är en del av kandidatexamen för civilingenjörer i miljö- och vattenteknik vid Uppsala universitet och SLU.

Christer Solander på Miljökontoret i Uppsala kommun har tillsammans med Conny Larsson, lektor vid Institutionen för geovetenskaper, handlett arbetet och Cecilia Johansson, också hon lektor vid Institutionen för geovetenskaper, har varit examinator. Beställare av projektet är Miljökontoret tillsammans med Gatu- och trafikkontoret på Uppsala kommun.

Vi i projektgruppen vill tacka Christer Solander, som under hela projektets gång gett oss återkoppling, försett oss med information och satt oss i kontakt med andra viktiga parter. Vi är också tacksamma för vägledningen från Rolf Sundbom, Gatu- och trafikkontoret, Sara Janhäll, konsult på WSP, och Conny Larsson. Ett stort tack även till alla andra som har hjälpt och stöttat oss under arbetets gång, bland annat Lars Burman på SLB-analys, Hans Bergström, forskare vid Institutionen för geovetenskaper, Reto Würgler, forskningsingenjör BernMobil samt Jesper Rydén och Silvelyn Zwanzig, lektorer vid matematiska institutionen. Tack också till Upplands Lokaltrafik.

Uppsala, Maj 2011

Begreppsförklaring och definitioner

Förkortning	Innebörd
CRT	Continuously Regeneration Trap, ett filtersystem
EEV	Enhanced Environmentally-fiendly Vehicle, ett sätt att miljöklassificera fordon utöver Euro-klassningen
Euro-klass	En Europeisk fordonsindelning utifrån miljöpåverkan
LED	Light Emitting Diode, ljusdiod
MKN	Miljökvalitetsnormer
NO	Kvävemonoxid
NO $_{2}$	Kvävedioxid
NOx	NO och NO2 adderade
SCR	Selective Catalytic Reduction, en avgasrening (efterbehandling) där urea tillsätts till de heta avgaserna och dă bildar N2 och H2O
Torrdeposition	Då jordytan tillförs gas eller partiklar från atmosfären
Tung Trafik	Fordon med en vikt över 3,5 ton
UL	Upplands Lokaltrafik
VOC	Volatile Organic Compounds, lättlyktiga organiska föreningar
Våtdeposition	Gaser eller partiklar som tillförs jordytan efter att först ha lösts i vatten

Innehåll

Referat ii
NYCKELORD: ii
Abstract ii
Keywords: ii
Förord iii
Begreppsförklaring och definitioner iv
1 Inledning 1
1.1 SYFTE 1
1.2 AVGRÄNSNINGAR 1
1.3 BAKGRUND 2
1.3.1 Lagstiftning gällande utomhusluft 2
1.3.2 Områdesbeskrivning 2
1.3.3 Luftkvaliteten i centrala Uppsala, historik och åtgärder 4
1.3.4 NO_{x}-flöden i stadsmiljö 5
1.3.5.1 Metoder att minska NO_{x} i avgasuts/äpp 6
1.3.6 Hälsorisker 6
1.3.7 Åtgärder i andra städer 7
1.3.8 Miljözon 7
1.3.8.1 Miljözon i Stockholm 8
1.3.8.2 Miljözon i Göteborg 8
1.3.8.3 Miljözon i Berlin 8
1.3.9 Meteorologiska förhållanden 8
1.3.9.1 Marknära ozon 9
2 Metod och genomförande 10
2.1 FÖRSTUDIE 10
2.2 Insamling och behandling av data 10
2.2.1 Datainsamling 10
2.2.2 Manuell trafikmätning 13
2.2.3 Analys och behandling av trafikdata 13
3 Resultat och diskussion 17
3.1 RESULTAT AV DEN MANUELLA TRAFIKRÄKNINGEN 17
3.2 BAKGRUND TILL DATAANALYSENS UTFALL 18
3.3 SAMBAND 18
3.3.1 NO_{2}-variation 18
3.3.2 Meteorologiska parametrar. 19
3.3.2.1 Ozon 19
3.3.2.2 Nederbörd 20
3.3.2.3 Temperaturdifferens 21
3.3.2.4 Temperatur 23
3.3.2.5 Vindriktning och vindstyrka 24
3.3.3 Trafikintensitet 27
3.3.3.1 Fordon och NO_{2}-variationer 28
3.3.3.2 Dygnsfördelning av fordon samt dess utsläpp av $N O_{x}$ 28
3.3.3.3 Analys av trafik-och NO_{2} data under perioden 30 september till 7 oktober 2010 30
3.4 FELKÄLLOR 32
3.4.1 Trafikmätningar 32
3.4.2 NO_{2}-mätningar 34
3.5 MÖJLIGA ÅTGÄRDER 34
3.5.1 Bättre trafikmätningar 34
3.5.2 Miljözon 34
3.5.3 Omledning av trafiken 36
3.5.4 Genomfartsförbud 36
3.5.5 Biljettsystem 36
4 Slutsatser 37
4.1 ORSAKER TILL FÖRHÖJDA NO2-HALTER 37
4.2 FÖRSLAG TILL ÅTGÄRDER. 37
5 Referenser 39
5.1 SKRIFTLIGA 39
5.1.1 Vetenskapliga artiklar 39
5.1.2 Rapporter 39
5.1.3 Offentliga tryck 40
5.1.4 Elektroniska dokument 40
5.2 PERSONLIG KONTAKT 41
5.2.1 Muntliga 41
5.3 ÖVRIGT 41
5.3.1 Karta 41

1 Inledning

Uppsala kommun har under en längre tid haft problem med att på Kungsgatan, en centralt belägen genomfartsled, uppfylla de miljökvalitetetsnormer som finns för NO_{2}. Om inte MKN uppfylls riskerar kommunen att behöva betala ett eventuellt vite som Sverige kan åläggas enligt EU-direktiv, för att ha överskridit befintliga gränsvärden. Projektgruppen kopplades in för att undersöka orsakerna till de höga halterna NO_{2} och för att komma med förslag på vad som kan göras för att minska dessa och på så sätt förbättra luftkvaliteten i Uppsala centrum.

1.1 SYFTE

Projektet syftar till att undersöka hur olika fordonstyper i rådande trafiksituation bidrar till de höga halterna NO_{2} samt diskutera möjliga åtgärder för att uppfylla MKN avseende $\mathrm{NO}_{2} \mathrm{i}$ området kring Kungsgatan, där MKN i nuläget inte uppfylls.

1.2 AVGRÄNSNINGAR

I detta projekt har endast det bidrag till NO_{2}-halterna som trafiken står för studerats. Hänsyn har ej tagits till eventuella punktkällor av NO_{2} och deras variationer. Detta eftersom vägtrafiken står för en stor del av de utsläpp som bidrar till att höja NO_{2}-halten. (Figur 1) illustrerar fördelningen av kvävedioxidemissioner från olika källor för Stockholm och Uppsala län.

Figur 1. Fördelning av kvävedioxid från olika källor för Stockholm och Uppsala län. Källa: SLB, 2011

1.3 BAKGRUND

1.3.1 Lagstiftning gällande utomhusluft

De lagar i Sverige som påverkar miljön är till stor del samlade i miljöbalken (1998:808) som trädde i kraft 1 januari 1999. Då Sverige är medlem av Europeiska unionen gäller även EUförordningar och direktiv. I 5 kap miljöbalken återfinns miljökvalitetsnormer, MKN. De gränsvärden som gäller för luftkvalitet återfinns i luftkvalitetsförordningen (2010:477), som följer de krav som ställs på luftkvalitet i EU:s direktiv om luftkvalitet och renare luft i Europa (2008/50/EG). De gränsvärden från luftkvalitetsförordningen som gäller för NO_{2} kan ses i (tabell 1). För att uppfylla MKN krävs att samtliga gränsvärden inte överskrids, det vill säga både för timme, dygn och år. Enligt luftkvalitetsförordningen ska kommunen kontrollera att normerna för kvävedioxid följs inom kommunen, medan kväveoxider i regional bakgrund kontrolleras av naturvårdsverket. Luftkvalitetsförordningen tillsammans med 5 kap miljöbalken redogör för hur kontroll av normerna utförs samt, om de inte uppfylls, hur ett åtgärdsprogram ska utformas.

Tabell 1. Tabell över gränsvärden för NO_{2}

Gränsvärde, $\boldsymbol{\mu g} / \mathrm{m} 3$ luft	Period	Kommentar
$\mathbf{9 0}$	1 timmar	Får överskridas $175 \mathrm{ggr} /$ kalenderår förutsatt att föroreningsnivå aldrig överstiger $200 ~ \mu \mathrm{~g} / \mathrm{m}^{3}$ luft under en timme mer än $18 \mathrm{ggr} / \mathrm{kalenderår}$.
$\mathbf{6 0}$	1 dygn	Får överskridas 7 ggr/kalenderår.
$\mathbf{4 0}$	Kalenderår	

1.3.2 Områdesbeskrivning

Kungsgatan är hårt trafikerad väg som går genom centrala Uppsala. På Kungsgatan, utanför Uppsala stadshus, finns en mätstation placerad vid vägkanten som kontinuerligt mäter NO_{2}-halt med mera. Mätstationen är belägen vid korsningen Kungsgatan/Vaksalagatan, två ganska hårt trafikerade gator. I närheten av mätstationen ligger Uppsala Resecentrum vilket medför att busstrafiken på Kungsgatan är stor och större delen av alla UL:s bussar passerar mätstationen. På båda sidor om Kungsgatan vid mätstationen finns höga byggnader, vilket påverkar luftens omblandning och detta kan i sin tur påverka NO_{2}-halten på ett missgynnsamt sätt (Sahlée, 2011). (Figur 2) och (figur 3) visar placering av mätstationen för NO_{2}.

Figur 2. Mätstationen vid korsningen mellan Kungsgatan och Vaksalagatan. Foto: Erik Ribeli

Figur 3. Mätstationen markerad som röd prick i kartan. Källa: Lantmäteriet, 2011

1.3.3 Luftkvaliteten i centrala Uppsala, historik och åtgärder

Halterna för NO_{2} har i centrala Uppsala under en längre tid överskridit de gränsvärden som finns definierade i luftkvalitetsförordningen. Åtgärder har vidtagits och år 2010 sågs en tydlig minskning av biltrafiken på Kungsgatan (Sundbom, 2011). Trots detta fortsatte $\mathrm{NO}_{2}{ }^{-}$ halten i luften att vara fortsatt hög. Under flera år tidigare har tim- och dygnsnormerna för NO_{2} överskridits men 2010 var det första året då även årsmedelvärdet var för högt. År 2010 var årsmedelvärdet för $\mathrm{NO}_{2} 42 \mu \mathrm{~g} / \mathrm{m}^{3}$ jämfört med tillåtna $40 \mu \mathrm{~g} / \mathrm{m}^{3}$, dygnsnormen ($60 \mu \mathrm{~g} / \mathrm{m}^{3}$) överskreds 42 dygn jämfört med tillåtna 7 dygn och timnormen ($90 \mu \mathrm{~g} / \mathrm{m}^{3}$) överskreds 342 timmar jämfört med tillåtna 175 timmar (Solander, 2011).

För att komma till rätta med problemet ålade regeringen kommunen att upprätta ett åtgärdsprogram med syftet att klara MKN. Åtgärdsprogrammet (Uppsala kommun, 2006) fastställdes 2006 och kompletterades 2009 med en åtgärdsplan (Uppsala kommun, 2009) som preciserar vilka åtgärder som skulle utföras under perioden 2009-2010.

I åtgärdsprogrammet föreslås olika åtgärder som delas in i två kategorier; åtgärder som ändrar resvanor och åtgärder som minskar utsläppen NO_{2}. Underkategorier till dessa är mer attraktiv kollektivtrafik, ökad cykelanvändning, samlad parkeringspolicy, begränsad framkomlighet, renare fordon, förbättrad väghållning och ekonomiska styrmedel.

I åtgärdsplanen, som alltså specificerar åtgärder som gäller för perioden 2009-2010, anges att för att klara MKN behöver NO_{2} halterna sänkas med minst 5%. I planen beskrivs fyra huvudåtgärder; hastighetssänkning, begränsad framkomlighet, miljözon för tyngre fordon samt information och marknadsföring. Dessa fyra åtgärder sammanfattas nedan:

- Under 2009 infördes i Uppsala innerstad hastighetssänkning till $30 \mathrm{~km} / \mathrm{h}$, på Kungsgatan förblev dock hastigheten $50 \mathrm{~km} / \mathrm{h}$. Beräkningar gjorda för Uppsala visar att positiva effekter av en hastighetssänkning kan utebli helt, men kommunen tycker ändå att åtgärden är värd att prova.
- Genom ett antal åtgärder ska trafiken på Kungsgatan begränsas. Målet är att minska trafiken med minst 15%. Planen för att uppnå detta är att öppna andra vägsträckor för att avlasta Kungsgatan, samt informera om och reglera befintliga bussfiler för att minska trafiken i dessa. Genomfartsförbud nämns som alternativ om övriga åtgärder skulle vara otillräckliga. Detta då genomfartstrafik står för en stor del av trafiken på Kungsgatan.
- Enligt planen skulle inrättandet av en miljözon förberedas under 2009 och ha införts under 2010. Miljözon har införts i andra städer och inneburit sänkta utsläpp från den tunga trafiken. Införandet har också drivit på teknikutvecklingen mot tystare och renare fordon.
- Under 2009 ska en marknadsföringsplan tas fram. Syftet med denna är att implementera de ovannämnda åtgärderna.

I åtgärdsplanen beskrivs också pågående åtgärder. Det handlar bland annat om att göra busstrafiken mer attraktiv och att övergå från dieselbussar till biogasbussar. För att omfördela trafiken ut ur stadskärnan ska vägsträckor utanför centrum förbättras. I åtgärdsplanen anges att om de återkommande uppföljningarna visar att genomförda åtgärder ej varit tillräckliga ska åtgärdsplanen uppdateras 2011. Eftersom befolkningen ökar, vilket förväntas leda till mer trafik, räknar man med att fortsatta insatser kommer att vara nödvändiga även om miljökvalitetsnormerna uppfylls 2011.

I nuläget har dubbdäcksförbud vintertid införts på Kungsgatan. Detta skulle kunna vara en orsak till minskningen av biltrafiken, dock är påverkan på luftkvaliteten på grund av dubbdäcksförbudet ännu inte utvärderad. En miljözon i Uppsala är fortfarande på idéstadiet. Kommunen har diskuterat huruvida undantag för bussar i en sådan eventuell miljözon skulle kunna göras. Detta är rent juridiskt möjligt, men effekterna av en sådan är osäkra.

1.3.4 $\mathrm{NO}_{\mathbf{x}}$-flöden \mathbf{i} stadsmiljö

När man i luftvårdssammanhang säger NO_{x} åsyftas halten NO_{2} adderad med halten NO . Kväveoxider bildas bland annat vid olika förbränningsprocesser, t.ex. i motorer hos fordon. Vid de höga tryck och temperaturer som råder i en motor oxideras luftens kvävgas till främst NO men även till NO_{2}. När NO med avgaserna kommer ut i atmosfären oxideras den till NO_{2} genom ett antal möjliga reaktioner. En av dessa reaktioner är den med marknära ozon $\left(\mathrm{O}_{3}\right)$ (Wikipedia, 2011). Marknära ozon ökar alltså NO_{2}-halten i luften. På grund av att ozon reagerar med NO är ozonhalten generellt lägre i trafikmiljö. Torrdeposition av NO_{2} förekommer, men är en långsam process och på så vis obetydlig för de höga halterna i luften. Den enda kända mekanismen för torrdeposition är upptag via växtstomata och alltså inte betydande i omfattning (Johanson, 2004). Våtdeposition är den mest betydande delen av den totala depositionen (Engart, 2007). Mängden våtdeponerad NO_{x} ökar med mängden nederbörd (Björkvald, 1999). Uppehållstiden för NO_{2} i atmosfären är kort vilket medför att ingen större transport till och från mätplatsen sker (Broberg, 2011).

Olika drivmedel ger upphov till olika stora utsläpp av $\mathrm{NO}_{x} / \mathrm{NO}_{2}$. Busstrafiken i Uppsala drivs av biogas och diesel. Skillnaderna i utsläpp mellan olika dieselbussar är dock betydande om man jämför olika Euroklasser, se (tabell 2) nedan. Emissionerna NO_{x} är angivna i $\mathrm{g} / \mathrm{kWh}$ och är hastighetsberoende. Övrig tung trafik drivs nästan uteslutande av diesel. Drivmedel för personbilar varierar, bensin och diesel är dock de vanligast förekommande. Dieselmotorer ger generellt högre utsläpp av NO_{x} än bensinmotorer. För
dieselmotorer är dessutom andelen NO_{2} av total NO_{x} högre än för bensinmotorer (Clapp, 2001).

För att lättare kunna jämföra utsläppen mellan olika fordon finns Euroklassningen, ett europeiskt regelverk som reglerar vilka maximala utsläpp av föroreningar som får förekomma från fordon i en viss klass. (Tabell 2) visar emissionsgränserna för de olika euroklasserna och året anger när dessa gränser började gälla. EURO-1 till -5 gäller dieselfordon medan EEV gäller samtliga fordon. Målet med klassificeringen är i slutänden att utsläppen av NO_{x} och partiklar ska minska. Dock kommer utsläppen av en del andra ämnen såsom SO_{x} och CO_{2} att öka, då bränsleförbrukningen faktiskt är högre i de nyare Euroklasserna (Norrman, 2005). Totalt sett har dock utsläppen av SO_{x} minskat med ca 90% mellan 1985 och 1998 (Johansson, 2002), så en marginell höjning av dessa utsläpp behöver inte ha alltför stor betydelse.

Tabell 2. Utsläppsdata för olika euroklasser. Källa: Keller, 2005

	Euro-1	Euro-2	Euro-3	Euro-4	Euro-5	EEV									
Direktiv	$91 / 542 / \mathrm{EWG}$								$1999 / 96 / \mathrm{EG}$					$2008 / 2009$	
År	$1992 / 93$	$1995 / 96$	$2000 / 01$	$2005 / 2006$	2	2									
NO [[g/kWh]	9	7	5	3,5											

1.3.5.1 Metoder att minska NO_{x} i avgasutsläpp

I dagsläget används tre olika metoder för att få bort kväveoxiderna ur avgaserna på främst dieseldrivna fordon (Keller, 2005). Vanligast är en kombination av avgasåterföring och partikelfilter. De tre teknikerna är ett filtersystem (CRT, Continuousely Regeneration Trap), ett gasomvandlingssystem (SCR, Selective catalytic reduction) eller SCRT (Selective Catalytic Reduction Trap), en kombination av dessa. Vid gasomvandlingen tillsätts urea till avgaserna, som då reducerar NO_{x}-gaserna till N_{2} och $\mathrm{H}_{2} \mathrm{O}$. Med dessa metoder uppnås Euro4 -standard, men för att klara av Euro- 5 behövs ytterligare förbättringar i själva motorn.

1.3.6 Hälsorisker

Luftföroreningar är ett stort folkhälsoproblem i Sverige och resten av Europa. Forskning på senare tid har kunnat visa att även låga halter av luftföroreningar påverkar människors hälsa negativt. Detta genom bland annat ökad risk för hjärt- och kärlsjukdomar och utveckling av barnallergi (Sabelström, 2011). Det är därför av riksintresse att upprätta styrmedel som kommer att leda till en reduktion av luftföroreningar i Sveriges större städer. Kvävedioxid, som detta projekt fokuserar på, anses vara en bra indikator på hur mycket utsläpp som kommer ifrån trafiken. Det krävs höga halter av kvävedioxid för att åstadkomma lindriga skador på lungorna, följaktligen är det andra avgaspartiklar från
trafikutsläppen som förorsakar allvarligare hjärt- och kärlsjukdomar (Johansson, 2007). Det har påvisats ett tydligt samband mellan kvävedioxid och lungcancer där människor under åren 1955-1970 har blivit utsatta för innerstadshalter (>30 mikrogram per kubikmeter) av kvävedioxid. Dessa individer löpte en 50 procent ökad risk att 30 år senare drabbas av cancer, oavsett om de var rökare eller inte. Det finns ytterligare studier som konstaterar att personer som bott nära hårt trafikerade vägar löper 50 procent högre risk att dö akut i hjärtinfarkt än de som bott ute på landet (Johansson, 2007).

1.3.7 Åtgärder i andra städer

Många större europeiska städer har eller har haft problem med NO_{2} liknande de i Uppsala. Man har vidtagit åtgärder som syftar till att optimera kollektivtrafiken, förbättra förhållanden för cyklister och fotgängare och i allmänhet reducera trafiken. Hastighetsregleringar har också gjorts, utfallet av dessa med avseende på NO_{2} är dock oklart. I en del städer med bilköproblematik har det införts trafikmanagement i form av LED-skyltar för att guida fordon förbi köer. Miljözon har också införts i flertalet andra städer och visat sig ge positiva effekter, se nästa stycke.

1.3.8 Miljözon

Med miljözon menas ett område där det finns inskränkningar för vilka fordon som får röra sig. De i Sverige nu gällande reglerna för miljözon ställer krav på tunga fordon, det vill säga lastbilar och bussar med en vikt på 3,5 ton eller mer. Det finns dock på förslag från transportstyrelsen att införa olika klasser av miljözoner med restriktioner också för övrig trafik. Målet med en miljözon är att minska halterna $\mathrm{NO}_{\mathrm{x}}, \mathrm{PM}_{10}$, marknära ozon och liknande. Bestämmelserna är samma för alla svenska städer, vilka områden av en stad som ska innefattas av miljözonen bestäms dock lokalt i kommunen med stöd av trafikförordningen. Miljözon för tunga dieseldrivna fordon innefattar följande regler:

- Alla tunga dieseldrivna lastbilar och bussar är tillåtna att köra i miljözon i minst 6 år från första registrering oavsett registreringsland.
- Fordon som tillhör Euroklass 2 och 3 får färdas i miljözon i 8 år. I båda fallen räknas tiden från första registreringsåret.
- Fordon som tillhör Euroklass 4 får köra i miljözon till och med 2016, oavsett registreringsår. Detta gäller även de fordon vars motorer har anpassats för att uppfylla emissionskraven för denna miljöklass.
- Fordon som tillhör Euroklass 5 får färdas till och med 2020, oavsett registreringsår. Detta gäller även de fordon vars motorer har anpassats för att uppfylla emissionskraven för denna miljöklass.

Undantag görs för vissa typer av fordon t.ex. räddningstjänst och polis. Bestämmelserna om miljözon finns i förordning om ändring i trafikförordningen (2006:1208). I Europa finns idag

220 miljözoner, varav 6 stycken i Sverige. Nedan nämns vilka effekter införandet av miljözon haft i andra städer, som likt Uppsala har eller har haft problem med förhöjda halter av kväveoxider i utomhusluften.

1.3.8.1 Miljözon i Stockholm

Stockholm kunde efter införandet av miljözonen fastställa en minskning av kvävedioxidbelastningen med 1-8\% (Stockholms stad 2008).

1.3.8.2 Miljözon i Göteborg

Göteborg införde en miljözon år 1996, som utvärderades 2006. Man har där gjort beräkningar med hjälp av en modell för att undersöka effekterna av miljözonen. Både beräkningar av totala utsläpp med miljözon och utan miljözon gjordes och dessa jämfördes sedan. Resultatet blev att utsläppen av kväveoxider $\left(\mathrm{NO}_{\mathrm{x}}\right)$ minskade med 7.8%. Utöver utsläppsminskningen på grund av en miljözon så har antagligen en "naturlig" minskning skett då miljöklassen på övriga fordon, som inte omfattas av miljözonens regler, förbättrats sedan 1996 (Göteborgs stad 2006).

1.3.8.3 Miljözon i Berlin

I Tysklands huvudstad Berlin infördes en miljözon av tysk modell år 2008. Vid införandet av miljözonen hade det gjorts en noggrann kartläggning av trafiken, där man med hjälp av videokameror och fordonsregister tog fram vilka fordon som rörde sig i Berlin och hur mycket de släppte ut. 2009 gjordes sedan en uppföljning för att undersöka vilka effekter miljözonen haft på trafiken (Lutz, 2009). Resultaten visade att minskningen av tunga fordon med stora utsläpp var mycket större än förväntat. Totalt minskade NO_{x}-utsläppen från den tunga trafiken med drygt 10% under ett år, medan utsläppsminskningen av all trafik hamnade på 14% tack vare miljözonens införande. Här visade videoövervakningen att en modernisering av fordonen var störst utanför miljözonen. På så sätt kunde fastslås att miljözonens effekter inte begränsades till dess område utan verkade positivt i hela staden.

1.3.9 Meteorologiska förhållanden

Det finns flera samband mellan atmosfärens tillstånd och utsläppta föroreningars transportmekanismer. De meteorologiska förhållanden som påverkar atmosfärskemin varierar över dygnet och året och kan förklara variationer i luftkvalitet nära en utsläppskälla.

Under vintertid, främst molnfria dagar, råder i Sverige generellt en stabilt skiktad atmosfär vilken uppkommer över kalla ytor. Den stabila skiktningen är också typisk nattetid då det inte sker någon instrålningen från solen. Under dessa tillstånd motverkas luftens vertikalrörelser och ogynnsamma spridningsförhållanden skapas. Motsatsen till detta är varma, molnfria sommardagar som är förknippade med konvektiva atmosfärsförhållanden
och därmed optimala för spridning av föroreningar. Sommaren, med dess varma klimat och semesterperioder medför även en minskad trafiktäthet och bidrar på så vis indirekt till bättre luftkvalitet.

Juli och augusti är de mest nederbördsrika månaderna på året (SMHI, 2011). NO_{2} transporteras främst ur luften genom våtdeposition. När det regnar tvättas vattenlösliga föroreningar ur luften vilket ökar våtdepositionen av NO_{2}.

Vindens styrka och riktning kan tillsammans med områdets utformning i form av byggnader och ventilation lokalt påverka halten NO_{2}. Över Sverige blåser det generellt sydvästliga vindar, vilka korsar Kungsgatan vinkelrätt (Sahlée, 2011). (Figur 4) nedan visar en principskiss över den virvel som bildas i gaturummet då det blåser vinkelrätt mot gaturummet.

Figur 4. Principskiss över strömningen i ett gaturum då vinden blåser vinkelrätt mot gaturiktningen. Källa: Janson, 2005

1.3.9.1 Marknära ozon

Halten marknära ozon varierar över året och dygnet och eftersom detta är det främsta oxidationsmedlet för NO har halten en stor betydelse för NO_{2}-halten i ett område.

För bildandet av marknära ozon behövs solljus, NO och en liten oxiderbar molekyl. Den lilla oxiderbara molekylen kan vara en så kallad VOC, Volatile Organic Compound, ytterligare en NO-molekyl eller en luftradikal, alltså en av solljus genererad, väldigt reaktiv molekyl (Wikipedia, 2011). Kombinationen av NO_{x}-utsläpp från trafik, solinstrålning och VOCutsläpp från industrier och trafik bidrar tillsammans till bildandet av ozon och därmed en ökning av NO_{2}-halten (Janhäll, 2011).

2 Metod och genomförande

2.1 FÖRSTUDIE

Arbetet inleddes med litteraturstudier och intervjuer för att skapa en översikt och bättre förståelse av problemet, möjliga orsaker och åtgärder som redan vidtagits. Kommunikation skedde via regelbundna möten inom gruppen och med handledare, beställare samt kontaktpersoner med kompetens inom olika områden.

2.2 Insamling och behandling av data

En stor del av arbetet bestod i början av insamling av data som skulle komma att behövas i de senare delarna av projektet. När all data samlats in saknades vissa uppgifter vilka fick kompletteras med en egen manuell trafikräkning. Samtliga mätdata samlades i excelfiler för vidare bearbetning i Excel, Matlab och WRPLOT View.

2.2.1 Datainsamling

Från väderstationen på Geocentrum i Uppsala erhölls timupplöst klimatdata. Parametrarna vindhastighet, vindriktning, temperatur, nederbörd och temperaturdifferens ansågs vara intressanta för arbetet. Data för åren 2009 och 2010 användes.

Från kommunens mätstation på Kungsgatan erhölls uppmätta värden på NO_{2}, också dessa timupplösta. Data för åren 2009 och 2010 användes.

Ozondata för åren 2002-2007 från väderstationen i Marsta erhölls från SLB.

Uppsala kommun har genomfört trafikmätningar vid bland annat fyra olika platser längs Kungsgatan vid olika tidpunkter, samt vid Vaksalagatan öster om Kungsgatan. Data från dessa samlades in från kommunens gatu- och trafikkontor. Trafikdata var av två olika slag, dygnsupplöst data uppdelad på olika fordonsklasser (personbil/lätt lastbil/tunga fordon etc.) och timupplöst data som inte var uppdelad i olika fordonsklasser. Data som användes var för åren 2007, 2009 och 2010. (Figur 5) nedan visar trafikmätplatsernas placering. TM 1 avser Kungsgatan söder om S:t Olofsgatan, TM 2 avser Kungsgatan norr om Vaksalagatan, TM 3 avser Vaksalagatan öster om Kungsgatan, TM 4 avser Kungsgatan norr om Bangårdsgatan och TM 5 avser Kungsgatan norr om Bäverns gränd. (Tabell 3) visar när och var de olika trafikmätningarna var gjorda.

TM. 1
TM. 2
TM. 3

TM. 5

Figur 5. Översikt över trafikmätplatserna vid Kungsgatan. Källa: Lantmäteriet, 2011

Tabell 3. Trafikmätningar, mätperiod samt dataupplösning

Trafikmätplats	Mätperiod	Dataupplösning
Kungsgatan mellan S:t Olofsgatan och Klostergatan	$2007-05-26$ till 2007-06-04	Dygn
Kungsgatan mellan S:t Olofsgatan och Klostergatan	$2007-05-26$ till 2007-06-03	Timme
Kungsgatan mellan S:t Olofsgatan och Klostergatan	$2010-10-01$ till 2010-10-06	Timme
Kungsgatan norr Vaksalagatan	$2009-10-23$ till 2009-10-30	Dygn
Kungsgatan norr Vaksalagatan	$2009-10-24$ till 2009-10-29	Timme
Vaksalagatan öster Kungsgatan	$2010-10-19$ till 2010-11-01	Timme
Kungsgatan norr Bangårdsgatan	$2009-05-28$ till 2009-06-01	Timme
Kungsgatan norr Bäverns gränd	$2009-10-01$ till 2009-10-09	Dygn
Kungsgatan norr Bäverns gränd	$2009-10-01$ till 2009-10-14	Timme
Kungsgatan norr Bäverns gränd	$2010-10-01$ till 2010-10-06	Timme

För att kunna skilja på buss- och övrig trafik behövdes data över busstrafiken på Kungsgatan, vilken erhölls från UL. Data för både region- och stadsbussarna som trafikerar gatan användes i projektet. Olika entreprenörer kör UL:s regionbussar och trafikdata (hur många linjebussar som passerar mätstationen per timme) för dessa erhölls från UL. För de tre största entreprenörerna, KR Trafik, Nobina och Gamla Uppsala buss erhölls också data över fordonsflottornas miljöklassning. För att kunna använda dessa data krävdes att busstrafiken för 2009 och 2010 approximerades med busstrafiken för 2011 eftersom övriga trafikdata endast fanns tillgänglig för åren 2009 och 2010.

Från SLB erhölls även emissionsfaktorer för olika fordonstyper, baserat på ett riksgenomsnitt. Dessa kan ses i (tabell 4), där beräknade andelen bussar uppdelade på Euroklasser är inlagt, och i (tabell 5).

Tabell 4. Fördelning av bussar efter drivmedel och euroklass

Drivmedel (bussar)	Emissionsfaktor NO \mathbf{x} (g/km) för 30 $(\mathbf{k m} / \mathrm{h})$	Andel stadsbussar $(\mathbf{2 0 1 1}), \mathbf{(\%)}$	Andel regionbussar $\mathbf{(2 0 1 0) , (\%)}$	Andel av totala antalet bussar $(\%)$
Diesel-Euro-1	10,35	0	2,87	1,44
Diesel-Euro-2	11,36	11,69	34,02	22,86
Diesel-Euro-3	9,47	16,23	36,48	26,36
Diesel-Euro-4	5,84	10,39	5,74	8,07
Diesel-Euro-5	3,49	23,38	20,9	22,14
Alternativt bränsle (biogas)	5,01	38,31	0	19,16

Tabell 5. Emissionsfaktorer, viktade efter Sveriges fordonssammansättning, för bilar respektive övrig tung trafik

Fordonstyp	Emissionsfaktor (g/km) för (30 km/h)
Personbil	0,201
Övrig tung trafik	9,693
Övrig tung trafik, Euro 4	7,661

2.2.2 Manuell trafikmätning

Den 5 maj 2011 klockan 6.00-21.00 genomfördes en manuell trafikräkning i korsningen Vaksalagatan/Kungsgatan. Trafikmätningen gick ut på att räkna samtliga tunga fordon som passerade korsningen. Då endast data för UL:s bussar fanns att tillgå ansågs trafikräkningen vara nödvändig främst för att få en bättre uppfattning om hur den övriga tunga trafiken (övriga bussar, lastbilar, grävmaskiner och dylikt) på Kungsgatan var fördelad över dygnet. Vid räkningen skildes det på regionbussar, stadsbussar som drivs på diesel respektive biogas och övrig tung trafik. Projektgruppen var indelad i par och arbetade i skift med att registrera trafiken per timme uppdelad på korsningens norra och södra tillfartsvägar.

2.2.3 Analys och behandling av trafikdata

Data från de ovan nämnda, timupplösta trafikmätningarna granskades och en bedömning angående rimlighet gjordes. Beräknade medelvärden korrigerades i de fall det var nödvändigt. De dygnsupplösta trafikmätningarna som gjorts med avseende på fordonsklass sammanställdes och uppenbart felaktiga data avlägsnades. Mätningarna var gjorda norr om Bäverns gränd, norr om Vaksalagatan samt söder om S:t Olofsgatan. Samtliga mätningar gjorda vid mätplatsen norr om Vaksalagatan var i något avseende orimliga och togs därmed inte med i sammanställningen. Andelen tung trafik för respektive mätplats och datum sammanställdes i antal och procentandel. Uppgifter om antal stadsbussar respektive regionbussar användes därefter för att beräkna andelen övrig tung trafik.

Då det inte fanns några timupplösta räkningar per fordonsklass att tillgå, var det nödvändigt att göra en beräkning av olika fordonstypers andel av den totala trafiken i korsningen Kungsgatan/Vaksalagatan. Att korsningen Kungsgatan/Vaksalagatan specifikt studerades berodde på att denna plats ansågs vara representativ när trafikbelastning skulle kopplas till NO_{2}-halt uppmätt på mätstationen, vilken ligger bara några meter ifrån korsningen. Fordonen delades upp i kategorierna personbil, bussar i linjetrafik och övrig tung trafik.

Utifrån tillgängliga trafikräkningar per fordonsklass samt kända data på antalet bussar som passerar korsningen, kunde medelvärdet för andelen övrig tung trafik i den totala trafikströmmen beräknas till 5,2 \%. Beräkningarna finns i rapport ($W-11-10 / L-49$).

Observera att det saknades data för olika fordonstypers trafikandel på Vaksalagatan, varför denna antogs vara densamma som på Kungsgatan. Då det dessutom saknades timupplösning på dessa data blev det nödvändigt att genomföra en manuell trafikräkning för att ta reda på hur fördelningen avövrig tung trafik ser ut över dygnet. Det visade sig att det passerade ganska mycket övrig tung trafik tidigt på morgonen under räkningen, vilket indikerar att det kan ha varit en viss trafik även innan de manuella mätningarna påbörjades. Värden för övrig tung trafik mellan klockan 21 på kvällen och 6 på morgonen utgår därför från uppskattningar. Fördelningen av tung trafik över dygnet presenteras i (figur 6), för mer detaljer se rapport (W-11-10/L-49).

Övrig tung trafik, summerad

O Ovrig tung trafik - Trend 1

Figur 6: Dygnsfördelning av övrig tung trafik från manuell trafikräkning
För beräkningen av antalet fordon som passerar korsningen användes timupplösta data från tre mätstationer: Kungsgatan norr om Bäverns gränd, Kungsgatan söder om S:t Olofsgatan och Vaksalagatan öster om Kungsgatan. För det fjärde gatuavsnittet som leder fram till korsningen finns inga trafikräkningar, men denna gata är endast öppen för bussar i linjetrafik samt taxibilar. Två av mätstationerna (Bäverns gränd och S:t Olofsgatan) ligger en bit bort från korsningen, men om trafikflödet till och från Kungsgatan mellan korsningen och dessa platser kan antas vara lika stort ger de en god approximation av situationen i korsningen. Detta antagande är inte orimligt då det i vardera riktningen endast rör sig om två små gator (Bangårdsgatan och Bredgränd resp. S:t Persgatan och Klostergatan) som korsar Kungsgatan mellan korsningen och mätplatserna. Trafikräkningarna norr om

Bäverns gränd och söder om S:t Olofsgatan (v. 39 2010) är inte gjorda vid samma tillfälle som räkningen på Vaksalagatan (v. 42 2010), men då det endast skiljer några veckor och inga andra mätningar finns tillgängliga antas att det var en liknande trafiksituation vid de båda tillfällena.

Placeringen av mätstationerna gör det rimligt att anta att all trafik som passerar genom korsningen kommer registreras vid två mätplatser, en på väg in i korsningen och en på väg ut. Undantaget blir de bussar och taxibilar som passerar på den reglerade vägen till och från Stora Torget, som endast kommer registreras en gång. Utifrån kända data för busstrafiken kunde antalet bussar som kör den vägen varje timme beräknas. För att bestämma antalet fordon som passerar genom korsningen summerades antalet registreringar vid de tre trafikräkningsplatserna. Sedan användes följande formel:

$$
\begin{equation*}
\text { Antal fordon }=\frac{R_{\text {tot }}+B u s s_{\text {torget }}}{2} \tag{1}
\end{equation*}
$$

där $R_{t o t}$ är totala antalet registreringar vid trafikräkningsplatserna och Busstorget är antalet bussar som åker till/från Stora Torget.

För att sedan dela upp fordonen i olika kategorier användes sammanställda data från UL samt resultatet som presenterats i rapport (W-11-10/L-49). Samtliga ovan nämnda steg gjordes först som vardagsmedelvärden, grundade på trafikdata från följande perioder:

- Kungsgatan, norr om Bäverns gränd. Torsdag 1 oktober 2009 t.o.m. fredag 9 oktober 2009.
- Kungsgatan, söder om S:t Olofsgatan. Torsdag 30 september 2010 t.o.m. torsdag 7 oktober 2010.
- Vaksalagatan, öster om Kungsgatan. Tisdag 19 oktober 2010 t.o.m. tisdag 26 oktober 2010.

Valet av tidsperiod gjordes efter vilka tillförlitliga och kontinuerliga data som fanns att tillgå från trafikräkningarna. Dessutom gjordes liknande beräkningar specifikt för perioden 30 september 2010 t.o.m. 6 oktober 2010 . Under denna period fanns alla nödvändiga data förutom trafikräkningar från Vaksalagatan tillgängliga och därmed bedömdes det finnas goda möjligheter att se korrelationer mellan olika parametrar. Dock saknades en del timmar i trafikräkningarna, i dessa fall antogs veckans vardagsmedelvärde för den aktuella timmen approximera trafikmängden.

Utifrån trafikbelastningen kunde sedan beräkningar göras för att bestämma vilka fordonstyper som bidrar mest till utsläppen av NO_{x}-gaser på Kungsgatan. Då trafikräkningar med avseende på fordonstyp saknades för Vaksalagatan antogs andelen
övrig tung trafik vara lika stor som den beräknade för Kungsgatan. För att kunna utföra dessa utsläppsberäkningar togs det kontakt med Lars Burman vid SLB-analys, som skickade simulerade emissionsvärden för olika fordonstyper vid olika hastigheter. Dessa värden var viktade medelvärden beräknade utifrån den svenska fordonsammansättningen.

3 Resultat och diskussion

3.1 RESULTAT AV DEN MANUELLA TRAFIKRÄKNINGEN

(Figur 7) nedan sammanfattar resultatet av projektgruppens trafikräkning.
Total tung trafik mellan 6-21, 110505
400

350

300

250

200

150

100

50

0

○ Timvärde - Trendinje
Figur 7. Trafikberäkning i korsningen Vaksalagatan - Kungsgatan, 5 maj 2011.
Under mätdagen framkom även att en stor del av region- och stadsbussarna var märkta med "Ej i trafik" då de passerade korsningen. Dessa bussar faller mellan stolarna eftersom de inte finns med i bussdata erhållen från bussbolagen. I trafikmätningen blev de registrerade som ordinarie stads/regiontrafik.

Osäkerheten i detta resultat är stor eftersom mätningen endast är gjord under ett dygn och dessutom inte under hela dygnet. För att få ett säkrare resultat skulle det krävas en längre pågående trafikmätning som var kontinuerlig under hela dygnet. Resultatet ger dock en inblick i hur fördelningen av tung trafik ser ut under dagen.

3.2 BAKGRUND TILL DATAANALYSENS UTFALL

Det största problemet som stöttes på under dataanalysen är kopplat till att trafikintensiteten för olika typer av fordon varierar på liknande sätt över dygnets timmar. Detta kallas för multikollinearitet, något som innebär att flera parametrar varierar likartat och medför att det är svårt att visa på statistiska samband.

3.3 SAMBAND

3.3.1 NO_{2}-variation

Kvävedioxid, NO2

Figur 8. Årsvariationer av NO_{2} på Kungsgatan under 2009-2010
(Figur 8) visar på regelbundna årsvariationer av NO_{2}-halt på Kungsgatan. MKN på 90 $\mu \mathrm{g} / \mathrm{m}^{3}$ (röd linje) överskreds vid 116 tillfällen under år 2009 och 342 tillfällen under år 2010, med flest toppar under vinterhalvåret. De lägsta halterna påträffades under sensommaren.

Figur 9. Dygnsvariation NO_{2} för medelvardag
Från (figur 9) ses dygnsvariationen för NO_{2} för ett medelvardagsdygn på Kungsgatan.
Medelvardagsdygnet är baserat på timupplöst data från 20 september till 15 oktober 2010. NO_{2}-halten är lägst nattetid och stiger under tidig morgon. Under dagen är halten en aning lägre för att sedan öka framåt eftermiddagen och sjunka mot kvällen.

3.3.2 Meteorologiska parametrar

3.3.2.1 Ozon

Figur 10. Årsvariation av bakgrundshalten ozon under 2002-2007

Ozonhaltens variation under 2002-2007 ur dataserie från Marsta redovisas i (figur 10). De främsta topparna syns under våren och de lägsta bakgrundshalterna uppkommer under vintern. Detta innebär att det vintertid kan råda ozonbegränsning, dvs. att ozonet ej räcker till för att oxidera all NO till NO_{2} och resulterar på så vis i att kvoten $\mathrm{NO} / \mathrm{NO}_{2}$ blir större än normalt.

3.3.2.2 Nederbörd

Figur 11. Årsvariationen av nederbörd under 2009-2010
(Figur 11) visar nederbörd för 2009-2010. Tydliga nederbördstoppar kan ses under sensommar/höst. Nederbörd bidrar till deposition av NO_{2} och på så vis till lägre NO_{2}-halter i atmosfären.

3.3.2.3 Temperaturdifferens

Figur 12. Temperaturdifferensens årsvariation för 1-10 meter under 2009-2010
Enligt (figur 12) är temperaturdifferensen generellt positiv under vintermånaderna, vilket innebär en stabil atmosfärsskiktning, som alltså motverkar vertikaltransport och på så vis även spridning av NO_{2}.

Figur 13. Temperaturdifferensens dygnsvariation för 1-10 meter, medelvardag
I (figur 13) ses temperaturdifferensens variation över dygnet. Denna visar på en mer instabil atmosfär (negativ temperaturdifferens) under de timmar då solen står som högst. Under natten är atmosfärsskiktningen mer stabil. Detta stämmer överens med litteraturen
och innebär att spridningen av luftföroreningar bör påverkas positivt mitt på dagen och negativt under natten. Temperaturdifferensens dygnsvariation är baserad på ett medelvärde från perioden 20 september till 15 oktober. Att från en dygnsvariation visa ett samband mellan skiktning och NO_{2}-halt är dock svårt eftersom även trafikintensiteten har en dygnsvariation.

NO 2 som funktion av temperaturdifferensen $10-1 \mathrm{~m}$

Figur 14. Spridningsmodell för NO_{2}-halter för olika temperaturdifferenser under 2009-2010
Det finns ett samband mellan atmosfärsskiktning och NO_{2}-haltens årsvariation på Kungsgatan, där NO_{2}-halt ökar med ökande stabilitet, se (figur 14). På så vis återfinns extremhalterna av NO_{2} vid väldigt stabil respektive väldigt instabil skiktning. Antal dagar med neutral till instabil skiktning dominerar.

3.3.2.4 Temperatur

Figur 15. Temperaturens variation under 2009-2010
På grund av solinstrålningen har vi högre medeltemperatur under sommarhalvåret än under vinterhalvåret vilket ses i (figur 15). Dock finns inget tydligt teoretiskt samband mellan temperatur och NO_{2}-halt i luften, möjligen ett indirekt samband, genom att kalla temperaturer kan antas öka trafikintensiteten och på så vis även NO_{2}-halten.

Figur 16. Spridning av NO_{2} som funktion av temperaturen under 2009-2010
(Figur 16) indikerar högre NO_{2}-halter vid låga temperaturer. Som tidigare nämnt så finns det ingen teoretiskt tydlig förklaring till hur temperatur påverkar spridningen av emissioner. De riktigt låga temperaturerna återkommer dock under molnfria vinterdagar, vilka medför kraftigt stabil atmosfärsskiktning och på så vis dåliga spridningsförhållanden (se avsnitt 1.3.9). Det kan även vara intressant att studera hur trafikintensiteten varierar med medeltemperaturen, men tyvärr är trafikdata inte tillräcklig för att kunna göra en tillförlitlig bedömning.

3.3.2.5 Vindriktning och vindstyrka

Figur 17. Fördelning av vindriktning och vindstyrka under 2009-2010
Vindrosen i (figur 17) skapades i WRplot View och visar vindriktningens variation under 2009-2010 samt vindstyrkan från respektive riktning. Generellt blåser det sydvästliga vindar, vilka träffar Kungsgatan vinkelrätt och på så vis bildar en virvel enligt (figur 4). Detta medför koncentrationsskillnader av föroreningar mellan gaturummets lä- och lovartssida. De högsta koncentrationerna återfinns på läsidan vilket kan medföra opålitliga mätvärden då mätstationen är placerad på lovartssidan.

Figur 18. Säsongsfördelning av vindriktning och vindstyrka, övre t.v. vinter, övre t.h. vår, nedre t.v. sommar, nedre t.h. höst

Under vår, sommar och höst dominerar sydvästliga vindar vilka kan nå hastigheter på 9 m / s som timmedelvärde vilket kan ses i (figur 18). Vintersäsongens fördelning skiljer sig dock från de andra årstiderna, då de nordvästliga vindarna dominerar under vintern. Dessa vindar är emellertid relativt svaga och kan överskuggas av de starkare sydvästliga vindarna.

Figur 19. Fördelning av NO_{2} vid olika vindhastigheter under 2009-2010
NO_{2}-halten tenderar att minska med ökande vindstyrka, se (figur 19). Sambandet är dock ganska vagt.

Figur 20. Variation av NO_{2} med vindriktningen
(Figur 20) visar att det är lägst NO_{2}-halter vid vindar från 235 grader, vilket stämmer överens med teorin om hur sydvästliga vindar bidrar till bildande av en virvel och medför låga luftföroreningskoncentrationer på lovartssidan av Kungsgatan. Då det blåser från 340 grader, nästintill parallellt med gaturummet är NO_{2}-halterna högst. Här är det viktigt att ha i åtanke att vindar från 340 grader oftast förekommer vintertid, se (figur 18), och därför bör vägas samman med andra extremvärden så som atmosfärsskiktning. Att påverkan av nordostliga respektive sydostliga vindar är mindre kan ha sin grund i att dessa vindar inte är så kraftiga (se figur 17). De dagliga variationerna i vindriktning är små och har inte tagits hänsyn till i resonemanget om hur fördelningen av vindriktningen påverkar luftkvaliteten på Kungsgatan.

3.3.3 Trafikintensitet

De enda trafikdata som i dagsläget finns tillgängliga för en längre tidsperiod är de avseende busstrafik. De data som finns över personbilstrafiken kan inte användas till att ge någon med säkerhet fastställd bild av trafiksituationen. Posten övrig tung trafik är särskilt dåligt underbyggd som läget ser ut nu. Det som går att utläsa är dock, som redan nämnts, att de tre fordonstyperna varierar likartat över dygnets timmar.

Analysen har visat på ett positivt samband mellan NO_{2} och total trafik, se (figur 21) som visar hur det generellt ser ut under en dag. För att kunna gå vidare med arbetet var det nödvändigt med trafikdata uppdelad på posterna personbilar, bussar och övrig tung trafik i god tidsupplösning. Gruppens arbete med tillgänglig trafikdata resulterade i timupplöst data uppdelad på dessa tre poster för fem vardagar mellan 30 september till 6 oktober år 2010, vilket är ett minst sagt knapert underlag, särskilt eftersom det bygger på många antaganden (se avsnitt 2.3.1). Microsoft Excel har använts för att korrelera data över trafik och NO_{2}-halt för olika tidsperioder. Resultaten visar att det finns ett samband mellan trafik och NO_{2}-halt. Med i dagsläget tillgängliga data går det dock tyvärr inte att säga något om den statistiska säkerheten i de samband som anas.

3.3.3.1 Fordon och $\mathrm{NO}_{\mathbf{2}}$-variationer

Fordon och NO2

Figur 21. Variation av NO2 och fordon under 6 oktober 2010
Från (figur 21) kan ses att antalet fordon och NO_{2} flödena följer varandra under dygnet. Den 6 oktober valdes för att visa detta men fördelningen är liknande för övriga dagar där data finns att tillgå.
3.3.3.2 Dygnsfördelning av fordon samt dess utsläpp av $N O_{x}$

Figur 22. Dygnsfördelning av fordonstyper under ett vardagsmedeldygn

I (figur 22) kan det avläsas att personbilarna är den dominerande fordonsklassen på Kungsgatan. Beräkningarna baseras på trafikbelastningen i korsningen under ett vardagsmedeldygn, som i sin tur härrör från trafikräkningarna som nämnts i avsnitt 2.3.1.

Figur 23. NO_{x}-emissioner från olika fordonstyper baserat på trafikbelastning för ett vardagsmedeldygn

Graferna i (figur 23) ovan är framtaget genom att vikta medelutsläpp per km med respektive fordonstyps förekomst i trafiksituationen. Enheten g / km är alltså per alla fordon i sin klass. Personbilarna står enligt (figur 23) för den minsta andelen av $\mathrm{NO}_{\mathrm{x}}{ }^{-}$ utsläppen (g / km) och bussarna för den största, följt av den övriga tunga trafiken. Utsläppen av $\mathrm{NO}_{\mathrm{x}}(\mathrm{g} / \mathrm{km})$ baseras på emissionsfaktorer från SLB-analys grundade på Sveriges fordonssammansättning för respektive fordonsklass med en viktad medelhastighet på $30 \mathrm{~km} / \mathrm{h}$, se (tabell 4), samt trafikbelastningen i korsningen Kungsgatan/Vaksalagatan under ett vardagsmedeldygn.

I (tabell 4) se kapitel 2.2 .1 visas andelen linjebussar uppdelade efter drivmedel och euroklass, samt respektive emissionsfaktor. I tabellen kan avläsas att den största andelen av de totala bussarna klassas som Euro-3. Det är ungefär lika stor andel av bussarna som klassas som Euro-2 och Euro-5. Euro-2 har en mycket högre emissionsfaktor av NO_{x} än Euro-5. I (figur 24) kan detta avläsas grafiskt, där utsläppen från bussarna som tillhör Euroklass-5 släpper ut 70% mindre $\mathrm{NO}_{x}(\mathrm{~g} / \mathrm{km})$ än bussarna som tillhör Euroklass-2. I (figur 24) kan även ses att det är bussarna som är den största källan för utsläpp av NO_{x} (g / km) under ett vardagsmedeldygn.

Figur 24. Emissioner av $\mathrm{NO}_{\mathbf{x}}$ för respektive fordonstyp under ett vardagsmedeldygn
(Tabell 5) se kapitel 2.2 .1 visar den viktade emissionsfaktorn för personbil samt den övrigt tunga trafiken som har använts vid beräkningen. Ingen uppdelning efter drivmedel har kunnat göras för dessa fordonstyper.
3.3.3.3 Analys av trafik- och NO_{2} data under perioden 30 september till 7 oktober 2010

Resultat av dataanalys rörande trafik- och NO_{2} under perioden 30 september 2010 till 7 oktober 2010 i korsningen Kungsgatan - Vaksalagatan redovisas i nedanstående figurer. Lördag och söndag för perioden redovisas inte på grund av att data för tung trafik inte kan implementeras för en helg.

Fordon och NO2

Figur 25. Variationer av antal fordon och NO_{2}-halt under en vecka
I (figur 25) ses en tydlig trend av att NO_{2}-halten följer antalet fordon.
Bussar och NO2

Figur 26. Variationer av antal bussar och NO_{2}-halt under en vecka
I (figur 26) visas antalet bussar och NO_{2}-halten. I denna kan det särskilt urskiljas att när antalet bussar minskar under dagen, minskar även NO_{2}-halten.

Antal personbilar och NO2

Figur 27. Variationer av antal personbilar och NO_{2}-halt under en vecka
I (figur 27) visas antalet personbilar och NO_{2}-halten. I denna kan avläsas, tydligast för den 1 oktober, att under dagen minskar NO_{2}-halten, men inte personbilarna. Troligtvis är det alltså bussarna som har störst inverkan på NO_{2}-halten.

3.4 FELKÄLLOR

Den lilla mängden tillgängliga data inom vissa områden har medfört att en del approximationer och antaganden varit tvungna att göras, vilket självklart påverkar säkerheten i resultaten på ett negativt sätt. Nedan presenteras ett antal av de felkällor som riskerar att störa resultatet.

3.4.1 Trafikmätningar

- Trafikräkningarna indelade på olika fordonstyper har en tveksam säkerhet. Resultatet från två trafikmätplatser verkar rimliga, men den tredje trafikmätplatsen har uppenbart felaktiga data. Detta ger också vissa tvivel om trovärdigheten hos de två andra mätstationerna. Om även dessa två är felaktiga påverkar detta andelen tung trafik/personbilar i beräkningarna.
- Trafikräkningarna har inte gjorts intill korsningen, utan några tvärgator bort. Detta innebär att ett antagande görs om att trafikflödet är konstant fram till korsningen, vilket riskerar att påverka säkerheten i trafikbelastningsberäkningarna.
- Det finns inga timupplösta data som visar antal fordon per fordonstyp. Detta påverkar säkerheten i fördelningen av tung trafik över dygnet, som nu endast baseras på en manuell mätning under en dag.
- De allra flesta trafikräkningarna är gjorda vid olika tidpunkter och olika år. Detta påverkar säkerheten i beräkningarna av hur mycket trafik som passerar genom korsningen Kungsgatan/Vaksalagatan, då det inte finns fullständiga data att tillgå för någon tidsperiod. Dessutom påverkas säkerheten i andelen tung trafik då det endast finns data från två mätningar som registrerat fordonstyper, varav den ena är gjord redan 2007.
- För en av gatorna som leder fram till korsningen finns inga trafikräkningar alls. Detta torde inte påverka säkerheten alltför mycket då endast bussar och taxibilar har rätt att köra där, och tillgängliga bussdata gör det möjligt att kompensera för dessa. Taxibilarna kommer störa beräkningarna av trafikbelastningen något, men de borde utgöra en liten andel av trafiken och kan därmed rimligen försummas.
- Under vissa vardagar saknas data för några få timmar. I dessa fall har vardagsmedelvärdet för veckan antagits gälla.
- Kategorin "Övrig tung trafik" innefattade i de manuella räkningarna både lastbilar och oidentifierbara linjebussar, där de senare annars räknats med i de data för stads- och regionbussar som tillhandahållits av UL. Detta riskerar att störa fördelningen av övrig tung trafik över dygnet, som baseras på denna manuella mätning.
- Bussflottans sammansättning med avseende på euroklassfördelning är känd. Dock finns inga uppgifter om hur ofta olika bussar av en specifik euroklass passerar korsningen. Vid beräkningarna har därför antagits att alla bussar i flottan passerar lika många gånger.
- Det finns inga trafikdata från Vaksalagatan uppdelade på fordonstyp. Detta ger ytterligare osäkerhet i fördelningen mellan olika fordonstyper.

3.4.2 NO_{2}-mätningar

Enligt (figur 20) medför vindriktningen koncentrationsvariationer av NO_{2} i gaturummet. Eftersom det under större delen av året blåser sydvästliga vindar, återfås enligt teorin nämnd i avsnitt 1.3.9. de lägsta koncentrationerna på lovartssidan, där mätstationen idag är placerad. NO_{2}-halterna som mäts här är således inte representativa för hela Kungsgatan.

3.5 MÖJLIGA ÅTGÄRDER

3.5.1 Bättre trafikmätningar

En förutsättning för att få en bättre uppfattning om möjliga åtgärder för att förbättra luftkvaliteten är att genomföra trafikmätningar runt korsningen Kungsgatan/Vaksalagatan under en och samma tidsperiod. Mätningarna bör vara timupplösta och uppdelade på fordonstyp. På så sätt skulle underlaget för korrelation bli betydligt bättre och färre antaganden skulle behöva göras. Förutsatt att trafikmätningarna skulle kunna generera ett säkrare underlag skulle man kunna gå tillväga på följande sätt för att försöka korrelera olika trafiktyper med NO_{2}-utsläpp:

Data avseende personbilstrafik, busstrafik, övrig tung trafik och NO_{2} samkörs med väderdata för att hitta data som har registrerats vid liknande väderförhållanden. Det vill säga att data som registrerats under ett "normalväder" med liknande vindriktning, vindstyrka, temperaturdifferens och instrålning etc. plockas ut från ursprungsdata. När detta är gjort skulle trafikposterna kunna viktas efter medelutsläpp, dvs. graderas efter hur förorenande de är. När detta är gjort skulle det finnas ett mycket bättre underlag för att se vilka parametrar som har störst påverkan på NO_{2}-halten. Utifrån detta skulle det också kunna predikteras vad resultatet av en förnyelse av bussflottan skulle innebära för luftkvalitet. Det skulle också kunna utläsas hur stor del av utsläppen som kan tänkas härröra från respektive trafikslag.

3.5.2 Miljözon

En åtgärd, som har vidtagits i andra städer som haft liknande problem med höga NO_{2} halter, är att införa miljözon. Detta skulle medföra restriktioner för tunga fordon som måste ha en viss miljöklass, se reglerna för miljözon kapitel 1.3.8, för att få köra inom ett visst, av kommunen beslutat, område. Hur en miljözon skulle påverka luftkvaliteten i Uppsala centrum kan diskuteras. I (tabell 4) ses fördelningen av Uppsalas bussar med avseende på euroklass. I och med en miljözon skulle bussar av euroklass 1, 2 och 3 förbjudas. Emissionsfaktorerna för de lägre euroklasserna, det vill säga klass 1, 2 och 3, skiljer sig ganska mycket från de högre euroklasserna, och skulle fordon med dessa klasser helt uteslutas ur zonen skulle det kunna ge märkbar effekt på NO_{2}-halten i luften. Enligt (figur 24) står bussarna, följt av övrig tung trafik, för större delen av utsläppen NO_{x} under
ett medeldygn på Kungsgatan, och i en sådan situation skulle en miljözon vara en lämplig åtgärd. Hänsyn måste dock tas till hur beredda UL är att byta ut sina bussar, eftersom en miljözon där en stor del av bussarna inte får köra skulle ge en ohållbar situation.
Personbilar skulle inte bli påverkade av en miljözon.
(Figur 28) nedan visar NO_{x}-utsläpp om miljözon införs. Denna figur kan jämföras med (figur 24) som visar hur dagsläget ser ut. För att beräkna effekterna av en införd miljözon i Uppsala har bussars samt lastbilars emmisionsfaktorer för euroklass 1, 2, 3, bytts ut mot Euro 4, som då skulle bli lägsta accepterade miljöklassen, se (tabell 3) och (tabell 4). Vid införande av miljözon beräknas enligt denna modell en daglig minskning av $\mathrm{NO}_{x^{-}}$ emissioner med drygt $9200 \mathrm{~g} / \mathrm{km}$ vilket motsvarar ca 25%. Erfarenheter från andra städer (se avsnitt 1.3.8.3) visar också på positiva effekter i ett större område än det som omfattas av själva miljözonen. Minskningen av NO_{2}-halt i luften beror vidare på rådande atmosfärstillstånd och har ej gjorts några beräkningar på.

Figur 28. Emissioner av NO_{x} från respektive fordonstyp under ett vardagsmedeldygn om miljözon inrättas

3.5.3 Omledning av trafiken

En möjlighet att minska mängden bussar på Kungsgatan vore att leda om norrgående busstrafiken till norra sidan av centralstationen genom tunneln på Strandbodgatan. Detta skulle resultera i en måttlig minskning av antalet bussar som passerar mätstationen. Tyvärr skulle det också leda till ökat besvär för bussresenärer vilket riskerar att minska antalet resande med buss.

3.5.4 Genomfartsförbud

Enligt beräkningar utförda av kommunen utgör genomfartstrafiken ca 30% av den totala trafiken på Kungsgatan (Uppsala kommun, 2009). Utifrån detta kan man konstatera att ett förbud för genomfartstrafik skulle leda till en relativt stor minskning av trafikbelastningen. Huruvida detta i sin tur skulle påverka de uppmätta halterna av NO_{2} är dock oklart, då man på senare år redan sett en stor minskning av trafiken på Kungsgatan utan att någon betydande förändring av halterna kunnat uppmätas. (Solander, 2011)

3.5.5 Biljettsystem

Eftersom busstrafiken har visat sig stå för stora NO_{x}-utsläpp och det nuvarande biljettsystemet riskerar att leda till långa väntetider vid stationerna och därmed mycket tomgångskörning, bör något göras för att motverka detta. I dagsläget finns det möjlighet att köpa biljett innan man kliver på bussen via sms-biljett, men även direkt på bussen med kontokort. Vid påstigningen fungerar då busschauffören som biljettkontrollant, vilket leder till att man bara tillåts stiga på genom den främre dörren. En idé är att ändra de regler som fastslår att påstigning enbart kan ske genom en dörr. Dessutom bör det finnas biljettautomater på busshållplatserna istället för i bussen. Om kontrolluppdraget för busschauffören avskaffas och påstigning tillåts genom alla dörrar minskas väntetiden vid stationen och därmed den onödiga tomgångskörningen. På så sätt blir bussresan både snabbare, miljövänligare och populärare. Kontroll av biljetter kan då exempelvis ske via stickprov. Detta system finns bland annat i Bern och har där visat sig vara mycket praktiskt (BernMobil, 2011).

4 Slutsatser

4.1 ORSAKER TILL FÖRHÖJDA NO \mathbf{N}_{2}-HALTER

På grund av multikollinearitet, vilket beskrivs i avsnitt 3.2 är det svårt att bedöma vilka faktorer som har störst inverkan på NO_{2}-halten i luften. Analys av klimat- och $\mathrm{NO}_{2}-$ variationer visar dock på att atmosfärens tillstånd påverkar NO_{2}-halten. De meteorologiska parametrar som visar tydligast samband med NO_{2}-halt är atmosfärsskiktning, vindstyrka och vindriktning samt nederbörd. Att de lägsta NO_{2}-halterna förekommer under hösten är troligen ett resultat av flera meteorologiska faktorer så som årstidens låga ozonhalter, höga nederbördsmängder, relativt kraftiga sydvästliga vindar samt få dagar med stabil skiktning. De höga halterna vintertid kan förklaras bäst av atmosfärens överlag stabila skiktning. De skulle också kunna förklaras av ökad trafikbelastning men huruvida trafikintensiteten ökar eller minskar under vintern har inte kunnat fastslås utifrån tillgängliga data. Det kan också nämnas att på grund av att det generellt blåser sydvästliga vindar, vilket bildar en virvel enligt (figur 4), blir det lägst NO_{2}-halter på lovartssidan där mätstationen är placerad. Detta betyder att det antagligen är högre koncentrationer på andra sidan gatan. Detta stämmer med att observationerna från den idag borttagna mätstationen på läsidan, vid Stadsteatern, konsekvent visade högre värden än mätstationen vid stadshuset. (Solander, 2011)

Trafikintensitetens inverkan på NO_{2}-halt överskuggar klimatets. Man kan skilja på olika fordonstyper respektive olika bränslens påverkan, men den dåliga tillgången på data begränsar sambandens pålitlighet. Personbilar är den fordonstyp som är mest förekommande på Kungsgatan, men de största NO_{x}-emissionerna står bussarna för, följt av övrig tung trafik. Att personbilar inte har lika stor inverkan på NO_{2}-halten som tunga fordon har kan förklara varför NO_{2}-halten har fortsatt öka trots att antalet personbilar har minskat på Kungsgatan.

4.2 FÖRSLAG TILL ÅTGÄRDER

Trafikmätningar bör vara beslutsgrundande vid val av åtgärder. Att förbättra trafikmätningarna på Kungsgatan är därför essentiellt för att med säkerhet kunna bedöma vilken åtgärd som är mest lämplig. Den enda åtgärden som har kunnat analyseras för Kungsgatan är införandet av miljözon och resultaten visar då på en mycket positiv effekt. Att introducera miljözon, till skillnad från att leda om trafiken eller införa genomfartsförbud, är mer hållbart ur ett miljöperspektiv eftersom emissionerna verkligen minskar istället för att spridas ut över en större yta. Huruvida man vid införande kommer att möta ett juridiskt motstånd från bussbolagen är svårt att bedöma både för fallet miljözon liksom omledning av busstrafik.

Genomfartsförbud på Kungsgatan kommer troligen inte helt lösa problemet med för höga NO_{2}-halter, eftersom det antagligen är bussarna som enligt (figur 24) är den största källan, men kan möjligen vara en lösning i kombination med miljözon eller omledning av busstrafik.

Sammanfattningsvis skulle välplanerade trafikmätningar utgöra ett bra underlag för att utröna vilken eller vilka åtgärder som bör vidtagas för att få ned NO_{2}-halten till godtagbara nivåer.

5 Referenser

5.1 SKRIFTLIGA

5.1.1 Vetenskapliga artiklar

Clapp L.J. \& Jenkin M.E. (2001). Analysis of the relationship between ambient levels of O_{3}, NO_{2} and NO as a function of NO_{x} in the UK. Atmospheric Environment. Volume 35.63916405.

Johansson B. (2002). A comparison of technologies for carbon-neutral passenger transport. Transportation Research Part D. Volume 7. 175-196.

5.1.2 Rapporter

Björkvald L. \& Erlandsson C. (1999). Skogsmarkens näringsbalans - massbalansberäkning av baskatjoner med hjälp av GIS. Göteborg: Göteborgs Universitet. ISSN 1400-3821.

Enghardt M. \& Foltescu V. (2007). Luftföroreningar I Europa under framtida klimat. Norrköping: SMHI.

Ecotraffi c ERD3 AB. (2006). Utvärdering av miljözon i Göteborg. En rapport för Trafikkontoret i Göteborg stad. Göteborg.

Janson R. \& Hansson H. (2005). Luftföroreningar - Från utsläpp till effekt. Stockholm: ITM Luftlaboratoriet Stockholms universitet.

Johansson C. (2007). Hälsoeffekter av partiklar, tilläggsprogram 2006. Stockholm: SLB analys. 2007:14.

Johanson J., Jones J. \& Krieg R. (2004). Spridningsberäkningar för Affärsverken Karlskrona Abs planerade anläggning vid Rödeby. Norrköping: SMHI. 2004:20.

Keller M. \& Kljun N. (2005). Gas- oder Dieselbusse? Ergänzende Grundlagen für den Beschaffungsentscheid von BernMobil. Bern.

Lutz M. \& Dr. Rauterberg-Wulff A. (2009). Ein Jahr Umweltzone Berlin:
Wirkungsuntersuchungen. Berlin.

Norrman J., Arnell J., Belhaj M. \& Flodström E. (2005). Biogas som drivmedel för bussar i kollektivtrafik. Göteborg: IVL Svenska Miljöinstitutet. B1657.

Sabelström H. Andersson P. Ekman E. Hedberg E. Kyrklund T. \& Ricklund N. (2011). Luftguiden, handbok om miljökvalitetsnormer för utomhusluft. Stockholm:
Naturvårdsverket. ISSN 1650-2361.

WSP Analys \& Strategi. (2008). Miljözon för tung trafik i Stockholm 1996-2007. Stockholm: Trafikkontoret.

5.1.3 Offentliga tryck

Braunschweig. (2007). Luftreinhalte- und Aktionsplan. Braunschweig.

Europaparlamentets och rådets direktiv (2008/50/EG) av den 21 maj 2008 om luftkvalitet och renare luft i Europa.

Förordning om ändring i trafikförordningen (2006). (SFS 2006:1208).
Luftkvalitetsförordning (2010). (SFS 2010:477).
Länsstyrelsen i Skåne Län. (2007). Åtgärdsprogram för att uppfylla miljökvalitetsnormen för kvävedioxid i Malmö. Malmö: Länsstyrelsen i Skåne.

Miljöbalk (1998). (SFS 1998:808).
Naturvårdsverkets föreskrifter om kontroll av luftkvalitet (2010). (NFS 2010:8).
Uppsala Kommun. (2006). Förslag till Åtgärdsprogram för att klara miljökvalitetsnormerna för kvävedioxid och partiklar i Uppsala. Uppsala: Uppsala kommun.

Uppsala Kommun. (2009). Åtgärdsplan för att klara miljökvalitetsnormerna för kvävedioxid och partiklar i Uppsala 2009-2010. Uppsala: Uppsala kommun.

5.1.4 Elektroniska dokument

Egnéus, H. (2011?). "Biogas". Nationalencyklopedin. Tillgänglig:
http://www.ne.se/lang/biogas hämtat [2011-04-08].
BernMobil. Home page. [online] (2011). Tillgänglig:
http://www.bernmobil.ch/Seiten/aktuell/?oid=1213\&lang=de [2011-05-20].
SLB analys. Hemsida. [online] (2011). Tillgänglig: http://slb.nu/lvf/ [2011-05-19].

SMHI. Hemsida. [online] (2011). Tillgänglig: http://www.smhi.se/en/Research/Research-departments/Air-quality/simair-model-tool-for-air-quality-1.6830 [2011-04-13].

Wikipedia. [2011?]. "Ozone". en.wikipedia. Tillgänglig:
http://en.wikipedia.org/wiki/Ozone\#With_nitrogen_and_carbon_compounds [2011-0518].

Wikipedia. [2011?]. "Tropospheric ozone", en.wikipedia. Tillgänglig: http://en.wikipedia.org/wiki/Tropospheric_ozone [2011-04-12].

5.2 PERSONLIG KONTAKT

5.2.1 Muntliga

Broberg, My, studerande, Uppsala Universitet, 2011-03-13

Janhäll, Sara, konsult på WSP, Göteborg, möte 8 april 2011.

Sahlée, Erik, Institutionen för geovetenskaper, möte 15 april 2011.

Solander, Christer, miljökontoret Uppsala kommun, projektpresentation 30 mars 2011.

Sundbom, Rolf, Gatu- och trafikkontoret Uppsala kommun, möte 1 april 2011.

5.3 ÖVRIGT

5.3.1 Karta

Lantmäteriet (2001). Kungsgatan, Uppsala.

Datum

 2011-10-17
Redovisning av åtgärder för att förebygga överskridande av miljökvalitetsnormerna för partiklar, PM10 Ert dnr 2011-004826 MI

Miljö- och hälsoskyddsnämnden har i skrivelse daterad 2011-10-11 ålagt gatu-och trafiknämnden att senast 2011-10-28 redovisa åtgärder som vidtagits, planerar att vidtas, framskjutits eller möjliga åtgärder i allmänhet för att förebygga överskridanden av den tillåtna halten för PM10. Även åtgärder för att klara miljökvalitetsnormer på Väderkvarnsgatan vid en eventuell större trafikökning när Strandbodgatan öppnas, bör ingå i redovisningen.
Åtgärdernas effekt och andra faktorer som kan påverka utfallet ska redovisas.
Gatu-och trafikkontoret kan på kort sikt ge följande redovisning av läget. Vi hoppas inom en snar framtid kunna komplettera med en utförligare rapport med mer detaljerade analyser, med hjälp av konsult. Under kommande år kan dessutom ett nytt åtgärdsprogram behöva upprättas.

Stora byggprojekt och påföljande trafikregleringar

Stora delar av Uppsalas centrala delar har under senare år i onormalt hög grad varit utsatt för betydande störningar till följd av större byggprojekt, dvs främst spårombyggnaderna och byggandet av ett nytt resecentrum, som påbörjades år 2006. Dessa arbeten har tyvärr medfört vissa negativa miljöeffekter, av olika slag, från dels en ökad byggtrafik och från själva byggverksamheten i form av byggdamm från sågning, skärning, slipning osv av järn, sten och betongelement. Dels har också effekter uppstått på resmönster och fördelningen av trafik genom påföljande trafikregleringar, dvs antal resor, fördelningen av resor på alternativa mål, färdmedel och resvägar i staden. Ett antal byggprojekt av mindre storlek, med t ex alla nybyggnader och ombyggnader av gc-vägar i innerstaden, som nyligen vid StrandbodgatanVäderkvarnsgatan, har också inneburit ibland ganska betydande bidrag av stendamm från skärverktyg o dyl. Samtidigt som de syftar till att öka cykelresornas attraktivitet och säkerhet, och därigenom bidra till ett minskat bilresande osv.

Fler bussar på Kungsgatan, med partiklar från gator och vägar utanför centrum

Den ökade belastningen av bussar på Kungsgatan efter utflyttningen av stadsbussarna från Dragarbrunnsgatan år 2006 har inneburit olika former av ökad belastning på närmiljön. Axeltrycket från en buss är ca 10 ton, mer än tio gånger från en personbil, och fler bussar innebär bl a ökat slitage på toppbeläggningar och bärlager. Slitaget och partikelbildningen ökar i proportion till massa och hastighet, dvs om antalet bussar och deras hastigheter kunde minska skulle den delen av slitaget och partikelbildningen på Kungsgatan naturligtvis också minska. Lägre hastigheter kan å andra sidan öka kvävedioxiderna, åtminstone från äldre motorer. Men dessutom satsas det mycket idag på olika åtgärder och planering i syfte att så långt möjligt korta restiderna, som ett led i strävandena att uppnå t ex målet om fördubblad kollektivtrafikandel. Spårsatsningar har länge diskuterats, spårvagnar eller spårtaxi, som ett miljö vänligt, snabbare och kanske kostnadseffektivare alternativ, till en del av alla bussar. En annan påtalad, kanske inte så uppmärksammad, effekt av busstrafiken är all den modd och smuts, partiklar, som vintertid fastnar under bussarna från gator och vägar utanför centrum och transporteras in till centrum och där ofta kan lossna från underredet. Bussarna lämnar på så vis efter sig ett bidrag av partiklar, från många av de vägar som trafikeras med dubbdäck. Bussarnas storlek och form påverkar och förklarar partikelhalterna i luften också på andra sätt. Den luftvirvel som bildas efter bussarnas tvära bakdel är ofta tillräcklig föra att dra upp partiklar över gata och trottoar. En ytterligare förklaringsfaktor är trycket från accelererande bussars avgasrör. Trycket kan bli mycket högt och på busstyper där röret är lågt placerat och riktat ner mot gatan, blåses lätt partiklar och t ex lös fogsand upp (inte minst i det avseendet kan mätstationens läge vid trafiksignalen med köande och accelererande bussar bli kritiskt). Den totala effekten av en samlad, förbättrad kollektivtrafik förväntas ändå givetvis bli positiv, med fler resenärer, mindre biltrafik och i slutändan en bättre miljö.

Överhuvudtaget är det naturligtvis viktigt att det vid en bedömning av dagens luftkvalitet vägs in att flertalet av de byggprojekt som pågår har det långsiktiga syftet att förbättra trafiksituationen, minska bilresandet, genom att öka kollektivtrafikens attraktivitet och andel.

Vintersandningen ökade $\mathbf{5 0 \%}$ i vintras, fogsandningen under förhösten har ökat

Vintern 2010-2011 var liksom den föregående onormalt lång. För halkbekämpningen innebar det ökade mängder utlagd sand (bergkross) till ca 17 tusen ton mot normala 12 tusen ton, dvs 50% mer än normalt. Hur mycket detta enskilt kan ha bidragit till förhöjda partikelhalter är svårt att bedöma, men tillskottet torde rimligen göra skillnad (PM-10-normen 35 dagar överskreds dock inte förrän i september, möjligen pga övriga åtgärder).
Vintersandupptagningen sköts i stadskärnan av UTS, Teknik \& Service, som använder högtrycksspolning med vakuumsugning med nyinköpt utrustning, medan i resten av staden vinstersandupptagningen har utförts på entreprenad, med även andra, mer normala metoder. Vissa dagar har dock rutinerna konstaterats brustit, vilket påtalats, med följd att stora stoftmoln borstats upp. Själva måttet på överskridanden, med ett antal dagar normen får överskridas, skulle i och för sig möjligen kunna tala för ett mer koncentrerat upptagande av vintersanden, till färre dagar, om det kan förhålla sig så att partiklarna från upptagningen utanför stadskärnan under vissa meteorologiska förhållanden kan svepas in till centrum de
dagar upptagningen inte helt råkat genomförts enligt anvisningarna. Men de sammantagna effekterna och möjligheterna att genomföra en sådan modell är oklara och f n outredda.

Vägbanans fuktighet har stor betydelse för utvärderingar av mängden vägdamm och partiklar och bl a i Stockholm har särskilda vägfuktsensorer installerats i gator, till stöd när det gäller att sätta in effektvare åtgärder mot höga partikelhalter osv. Det finns vissa förslag, men ännu inga beslut, om att i en framtid installera sådana fuktsensorer i Uppsala på Kungsgatan (en offert har fö inhämtats).

Mängden utlagd sand är till viss del även en funktion av bussarnas hastigheter och rörelser och förarnas körsätt. Inbromsningar och accelerationer kan svepa bort nylagd sand vid hållplatser och korsningar, så att ännu mer sand måste fyllas på för att uppfylla regelverket för sandningen. I det avseendet torde t ex en sänkt högsta tillåten hastighet till $30 \mathrm{~km} / \mathrm{h}$ kunna ge en viss effekt på sandvolymen. Liksom utförligare information till förare om körsätt.

De senaste gatuombyggnaderna i stadskärnan, på Östra Ågatan, Vaksalagatan, Dragarbrunnsgatan m fl har i vissa delar inneburit en omläggning från asfaltbeläggning till olika typer gatsten. Det har speciellt inneburit att man årligen måste fylla på med fogsand i skarvarna mellan stenarna. I år har från i slutet av augusti och ca två veckor in i september, sådan sk fogsand (betongkross eg.) lagts ut över gator i innerstan där gatstenar finns, eller vid storgatsten i rännstenar. I år las ca 50 ton fogsand ut. Tidpunkten överensstämmer väl med de senaste tre överskridandena av PM10. Fogsanden innehåller en del mycket finfördelat, mjäligt, material som kan hänga kvar flera dagar över centrum efter utläggningen. Luftdrag och avgasutblås från bl a bussarna virvlar dessutom, vid torrt väglag, hela tiden upp partiklarna (spridningseffekter uppstår dessutom av att folk trampar omkring stoftet, t o m i så hög grad att vissa butiker klagat på nedsmutsningen) . Det görs visserligen en vattenbegjutning i samband med att fogsanden läggs ut men det är inte tillräckligt för att binda alla partiklar. Till saken hör också att den ökade frekvensen av högtrycksspolning med vakuumsugning som vidtagits i centrum för att hålla nere partikelhalterna samtidigt, å andra sidan, tar bort en del av fogsanden varje år och ökar påfyllningsbehovet (ett nytt påtalat besvär av finkornigt stänk som fastnar på fönster mm från detta renhållningsarbete har fö nyligen påtalats från brf Gandalf vid Vaksalagatan)

Från kontorets sida har de senaste utläggningarna av fogsand i slutet av augusti-början av septeber setts som den mest troliga förklaringen till överskridandena i september. Avgasutblåsen från bussar över fogsand och partiklar överhuvudtaget i rännstenar från accelererande bussar (speciellt vid köerna mot trafiksignalen vid mätstationen) torde vara en bidragande orsak till dessa senaste uppmätta höga halter.

Strandbodgatans effekter

Strandbodgatans avstängning för biltrafik, under fyra år sedan 2007-09-03, har gett betydande effekter på resmönster och omfördelningar av biltrafik i staden. Speciellt har centrala Vaksalagatan och Kungsgatan tenderat få mer biltrafik av detta, liksom stråket Kungsängsleden-Stålgatan-Björkgatan. Vaksalagatan har således ökat med ca 3-4000 vdt, från 11-12 000 vdt till 14000 vdt , medan Väderkvarnsgatan fẳt något mindre trafik, från ca

14000 vdt före 2007 till ca 10000 vdt efter avstängningen. I maj 2011 under Islandsbrons avstängning ökade flödet åter till ca 14000 på Väderkvarnsgatan.
Det totala antalet bilresor har dessutom tenderat att minska till innerstaden, dvs speciellt under vinterhalvåret, fast mest som en följd av det år 2010 införda dubbdäcksförbudet.
Sammantaget har alltså trots allt inte bara negativa effekter uppkommit av avstängningen.
Angöringen till tågen med bil har försvårats av Strandbodgatans avstängning och den samtidiga avstängningen av den västra entrén och av div. störningar från byggena vid den östra sidan, något som sannolikt tenderat minska den här delen av biltrafiken.
Strandbodgatan öppnas igen för biltrafik tisdagen den 25 oktober 2011. Det blir naturligtvis viktigt att följa utvecklingen av detta, spec. på Väderkvarnsgatan, och t ex hur långt Stationsgatan i befintligt skick har kapacitet att avlasta Väderkvarnsgatan. Trafikräkningar görs för att fă information om hur trafikflödena utvecklas och kan komma att utvecklas framöver, svårt säga hur lång anpassning det kan bli fråga om, efter fyra års ändrade resmönster etc.

Dubbdäcksförbudet

Under dubbdäcksförbudet mellan 2010-10-01 och 2011-04-05 (avkortat 10 dagar pga Islandsbrons avstängning), minskade antalet personbilar på Kungsgatan med ca 40% och det totala flödet med ca 30%. Andelen bilar med dubbdäck efter dubbförbudet, i snittet norr Bäverns gränd, har mätts upp till mellan $10-30 \%$, med något högre värden i slutet av förbudsperioden. Det ligger ju på polisens ansvar att övervaka att bilister följer föreskrifterna om dubbförbudet (under den föregående säsongen fälldes vid kontroller ett tjugotal bilister). Det kan i och för sig noteras att den positiva effekten av trafikminskningen i centrum givetvis är avhängigt en tillräcklig andel dubbdäck i bilparken, en andel som gradvis förväntas minska i och med dubbförbud och information till bilister om dubbdäckens nackdelar. Dessutom är dubb ett halkbekämpningsmedel, i dubbel mening, genom att dubb ruggar upp isiga vägar så att dubbfria däck kan få bättre fäste, inte minst i gator och korsningar där tung trafik genom inbromsningar och accelerationer polerar snö och is. I någon obestämd grad blir dubb, trots allt, på sätt och vis, substituerbart med sandningen.

30-zonen i centrala staden

Sedan 12 maj 2010 gäller $30 \mathrm{~km} /$ tim inom stadskärnan (dvs inom men inte på Skolgatan-Sysslomansg-S:t Olofsg-Kungsgatan-Stramdbodg-Ö Ågatan-Munkg-Drottningg (N Slottsg får 30 hela vägen)-Kyrkogårdsgatan). Kungsgatan undantogs pga främst busstrafikens framkomlighet och överhuvudtaget att det skulle vara förenligt med satsningen på en fördubblad andel kollektivtrafikresor. Effekterna av hastighetssänkningar på partikelhalterna kan dock vara svårbestämda (även om elementära fysikaliska lagar pekar mot positiva effekter). Högre hastigheter på fordon, åtminstone bussar (som dock inte berörs av 30-zonen), torde öka uppvirvlingseffekten, t ex av fogsanden. När det gäller NO2 råder viss osäkerhet om tecknet på effekten. Det finns fö en rad övriga klart positiva effekter när det gäller en rad parametrar, som buller, vibrationer, trafiksäkerhet, drift-o underhåll, trygghet, lugnare miljö etc att väga mot främst ökade restider.

Sammantaget bedöms effekterna av 30 -zonen som på flera sätt positiv, hastigheten har visat sig vara en viktig regulator även när det gäller miljö och luftkvalitet. Diskussioner om en utvidgning av 30-zonen i innerstan har fö upptagits, men inget konkret har ännu kommit fram. En omfattande hastighetsöversyn är ett krävande arbete som kan bli rätt komplext. Det pågår dessutom ett samarbete mellan Sveriges Kommuner och Landsting, transportstyrelsen m fl med att ta fram föreskrifter för kommuner om tillämpningen av de nya hastighetsreglerna, något som väntas bli klart juni-juli 2012.

Miljözonen

Gatu-och trafiknämnden beslutade vid sitt senaste möte 2011-09-28 att skjuta upp införandet av miljözon i innerstaden med ett år till 1 januari 2013. Anledningen är dels en försenad upphandling av lokaltrafiken, som lett till att UL stått med ett ettårigt avtal utan inskrivet krav på miljöfordon. Den försenade upphandlingen beräknas slutföras under hösten och innehålla miljökrav. Anledningen är också ett försenat beslut i EU om vilka regler som ska gälla för uppgradering av äldre fordon till högre miljöklasser. Sammantaget skulle detta få stora ekonomiska konsekvenser för företag och resenärer genom svårigheterna att trafikera alla linjer (GTN beslut 2011-09-28).

Dragarbrunnsgatan

Projekt Dragarbrunn innehåller ett antal etapper, med början i oktober 2010 i de södra delarna och med avslut i de norra delarna under 2014
Således har Dragarbrunnsgatan etappvis varit avstängd för omdaningen, sedan oktober 2010 och kommer fortsätta att så vara till någon gång under 2014, dvs utan genomgående biltrafik, och med förmodligen onormalt låga flöden gentemot de förväntade. Tillgången till parkeringsgaragen gör att trafikflödet likväl ligger på ca 2000 vdt.
Under en tid från augusti till och med oktober kommer dessutom framkomligheten på
Kungsängsgatan att vara begränsad av gatu- och ledningsarbeten.

Stationsgatan

Gatan har haft begränsad framkomlighet under bygget av det $\mathrm{s} k$ båghuset, och trafiken beräknas ha minskat med ca en tredjedel. En stor del av den angöringstrafik som tidigae gått via Kungsgatan tar nu vägen via Stationsgatan och den nya huvudentrén för angöring med bil

Islandsbron

Islandsbron var helt avstängd för biltrafik under perioden 2011-04-05 till 2011-09-20, då fjärrvärmarbeten och underhållsarbeten genomfördes. Effekterna på bl a Kungsgatan har varit betydande (trafikökningar med i storleksordningen 5000 vdt). Vid återöppnandet kunde markanta trafikminskningar direkt observeras på Kungsgatan - och motsvarande ökningar på Ö Ågatan.

Mätstationens läge, stadshusets ombyggnad

Mätstationens läge har diskuterats och ifrågasatts sedan det uppdagats att det inte följer rekommendationerna i naturvårdsverkets föreskrifter, där speciellt avståndet till närmsta körfältsmitt varit det mest kritiska (ca $2,3 \mathrm{~m}$ nu i stället för rekommenderade $4,5 \mathrm{~m}$). Den utvärdering som gjorts (Karin Persson, SLB, Göteborg) har dock i huvudsak undanröjt de tvivel om läget som uppkommit (även om det också sagts att stationen helst borde ha placerats i annat läge). Det finns också experter som har uttalat sig lite mer kritiskt. Kanske kan de delvis nya erfarenheterna som presenterats här ovan om betydelsen av fogsand, bussarnas moddsläpp och avgasutblås vara tillräckliga skäl för en förnyad prövning (se ovan). Det alternativa läge som gatukontoret och miljökontoret mätte ut för något år sedan, som klarade alla mått, bör ev. övervägas på nytt. Om inte annat i samband med ombyggnaden av stadshuset, som snart blir ytterligare en kritisk faktor att beakta. Kanske måste helt annan adress sökas åtminstone under ombyggnadstiden.

Konsultstödd rapport

Speciellt bussarnas betydelse för partikelhalterna ingår i den utredning, som en konsult väntas komma med inom kort (delvis med stöd av material från ett studentarbete om luften i Uppsala vid institutionen för geovetenskaper i maj 2011). Det kan bl a gälla frågan vad bussarnas axeltryck kan betyda för slitaget på gatan och partikelbildningen. Partikelhalterna har visserligen inte varit höga under dubbförbudsperioden, dvs under vintern, utan det är, givetvis, först efter snösmältningen fram till och med tiden för vintersandupptagningen som höga värden har uppmätts.
Om någon eller några busslinjer kan dras om och avlasta Kungsgatan-Vaksalagatan är i nuläget oklart, gatorna hör ju till de viktigaste huvudgatorna för kollektivtrafiken i staden och kollektivtrafiken ska enligt målsättningar dessutom öka sin andel betydligt (till hälften av den motordrivna trafiken enligt uttalad målsättning i ÖP) .

Planerade åtgärder

Nytt åtgärdsprogram bör enligt centrala direktiv göras vart sjätte år, dvs nästa år kan ett nytt program behöva göras, men det är $\mathrm{f} n$ inte helt klart på vilket sätt detta i så fall ska genomföras. Men givetvis kommer då om inte förr alla lämpliga åtgärder för att komma till rätta med luftkvalitetsproblemen att vederbörligen prövas.

Gatu- och trafikkontoret följer givetvis hela tiden utvecklingen och försöker på olika sätt klara den växande stadens trafikproblem och de ökande krav som bl a miljökvalitetsnormer ställer. Ett viktigt led i detta arbete är inte minst byggandet av resecentrum och omdaningen av centrum till något mer ändamålsenligt och attraktivare, som sammantaget förväntas minska bilresandet och ge betydande miljövinster, dvs utöver de negativa effekterna under byggtiden.

Gatu- och trafikkontoret

Tom Karlsson
Chef för gatu-och trafikkontoret

GATU- OCH TRAFIKKONTORET

Handläggare	Datum	Diarienummer
Sundbom Rolf	$2011-10-17$	GTN-2009-0334

Miljökontoret

Redovisning av åtgärder för att förebygga överskridande av miljökvalitetsnormerna för partiklar, PM10 Ert dnr 2011-004826 MI

Miljö- och hälsoskyddsnämnden har i skrivelse daterad 2011-10-11 ålagt gatu-och trafiknämnden att senast 2011-10-28 redovisa åtgärder som vidtagits, planerar att vidtas, framskjutits eller möjliga åtgärder i allmänhet för att förebygga överskridanden av den tillåtna halten för PM10. Även åtgärder för att klara miljökvalitetsnormer på Väderkvarnsgatan vid en eventuell större trafikökning när Strandbodgatan öppnas, bör ingå i redovisningen.
Åtgärdernas effekt och andra faktorer som kan påverka utfallet ska redovisas.
Gatu-och trafikkontoret kan på kort sikt ge följande redovisning av läget. Vi hoppas inom en snar framtid kunna komplettera med en utförligare rapport med mer detaljerade analyser, med hjälp av konsult. Under kommande år kan dessutom ett nytt åtgärdsprogram behöva upprättas.

Stora byggprojekt och påföljande trafikregleringar

Stora delar av Uppsalas centrala delar har under senare år i onormalt hög grad varit utsatt för betydande störningar till följd av större byggprojekt, dvs främst spårombyggnaderna och byggandet av ett nytt resecentrum, som påbörjades år 2006. Dessa arbeten har tyvärr medfört vissa negativa miljöeffekter, av olika slag, från dels en ökad byggtrafik och från själva byggverksamheten i form av byggdamm från sågning, skärning, slipning osv av järn, sten och betongelement. Dels har också effekter uppstått på resmönster och fördelningen av trafik genom påföljande trafikregleringar, dvs antal resor, fördelningen av resor på alternativa mål, färdmedel och resvägar i staden. Ett antal byggprojekt av mindre storlek, med t ex alla nybyggnader och ombyggnader av gc-vägar i innerstaden, som nyligen vid StrandbodgatanVäderkvarnsgatan, har också inneburit ibland ganska betydande bidrag av stendamm från skärverktyg o dyl. Samtidigt som de syftar till att öka cykelresornas attraktivitet och säkerhet, och därigenom bidra till ett minskat bilresande osv.

Fler bussar på Kungsgatan, med partiklar från gator och vägar utanför centrum

Den ökade belastningen av bussar på Kungsgatan efter utflyttningen av stadsbussarna från Dragarbrunnsgatan år 2006 har inneburit olika former av ökad belastning på närmiljön. Axeltrycket från en buss är ca 10 ton, mer än tio gånger från en personbil, och fler bussar innebär bl a ökat slitage på toppbeläggningar och bärlager. Slitaget och partikelbildningen ökar i proportion till massa och hastighet, dvs om antalet bussar och deras hastigheter kunde minska skulle den delen av slitaget och partikelbildningen på Kungsgatan naturligtvis också minska. Lägre hastigheter kan å andra sidan öka kvävedioxiderna, åtminstone från äldre motorer. Men dessutom satsas det mycket idag på olika åtgärder och planering i syfte att så långt möjligt korta restiderna, som ett led i strävandena att uppnå t ex målet om fördubblad kollektivtrafikandel. Spårsatsningar har länge diskuterats, spårvagnar eller spårtaxi, som ett miljövänligt, snabbare och kanske kostnadseffektivare alternativ, till en del av alla bussar. En annan påtalad, kanske inte så uppmärksammad, effekt av busstrafiken är all den modd och smuts, partiklar, som vintertid fastnar under bussarna från gator och vägar utanför centrum och transporteras in till centrum och där ofta kan lossna från underredet. Bussarna lämnar på så vis efter sig ett bidrag av partiklar, från många av de vägar som trafikeras med dubbdäck. Bussarnas storlek och form påverkar och förklarar partikelhalterna i luften också på andra sätt. Den luftvirvel som bildas efter bussarnas tvära bakdel är ofta tillräcklig föra att dra upp partiklar över gata och trottoar. En ytterligare förklaringsfaktor är trycket från accelererande bussars avgasrör. Trycket kan bli mycket högt och på busstyper där röret är lågt placerat och riktat ner mot gatan, blåses lätt partiklar och t ex lös fogsand upp (inte minst i det avseendet kan mätstationens läge vid trafiksignalen med köande och accelererande bussar bli kritiskt). Den totala effekten av en samlad, förbättrad kollektivtrafik förväntas ändå givetvis bli positiv, med fler resenärer, mindre biltrafik och i slutändan en bättre miljö.

Överhuvudtaget är det naturligtvis viktigt att det vid en bedömning av dagens luftkvalitet vägs in att flertalet av de byggprojekt som pågår har det långsiktiga syftet att förbättra trafiksituationen, minska bilresandet, genom att öka kollektivtrafikens attraktivitet och andel.

Vintersandningen ökade $\mathbf{5 0 \%}$ i vintras, fogsandningen under förhösten har ökat

Vintern 2010-2011 var liksom den föregående onormalt lång. För halkbekämpningen innebar det ökade mängder utlagd sand (bergkross) till ca 17 tusen ton mot normala 12 tusen ton, dvs 50 \% mer än normalt. Hur mycket detta enskilt kan ha bidragit till förhöjda partikelhalter är svårt att bedöma, men tillskottet torde rimligen göra skillnad (PM-10-normen 35 dagar överskreds dock inte förrän i september, möjligen pga övriga åtgärder). Vintersandupptagningen sköts i stadskärnan av UTS, Teknik \& Service, som använder högtrycksspolning med vakuumsugning med nyinköpt utrustning, medan i resten av staden vinstersandupptagningen har utförts på entreprenad, med även andra, mer normala metoder. Vissa dagar har dock rutinerna konstaterats brustit, vilket påtalats, med följd att stora stoftmoln borstats upp. Själva måttet på överskridanden, med ett antal dagar normen får överskridas, skulle i och för sig möjligen kunna tala för ett mer koncentrerat upptagande av vintersanden, till färre dagar, om det kan förhålla sig så att partiklarna från upptagningen utanför stadskärnan under vissa meteorologiska förhållanden kan svepas in till centrum de
dagar upptagningen inte helt råkat genomförts enligt anvisningarna. Men de sammantagna effekterna och möjligheterna att genomföra en sådan modell är oklara och fn outredda.

Vägbanans fuktighet har stor betydelse för utvärderingar av mängden vägdamm och partiklar och bl a i Stockholm har särskilda vägfuktsensorer installerats i gator, till stöd när det gäller att sätta in effektvare åtgärder mot höga partikelhalter osv. Det finns vissa förslag, men ännu inga beslut, om att i en framtid installera sådana fuktsensorer i Uppsala på Kungsgatan (en offert har fö inhämtats).

Mängden utlagd sand är till viss del även en funktion av bussarnas hastigheter och rörelser och förarnas körsätt. Inbromsningar och accelerationer kan svepa bort nylagd sand vid hållplatser och korsningar, så att ännu mer sand måste fyllas på för att uppfylla regelverket för sandningen. I det avseendet torde t ex en sänkt högsta tillåten hastighet till $30 \mathrm{~km} / \mathrm{h}$ kunna ge en viss effekt på sandvolymen. Liksom utförligare information till förare om körsätt.

De senaste gatuombyggnaderna i stadskärnan, på Östra Ågatan, Vaksalagatan, Dragarbrunnsgatan m fl har i vissa delar inneburit en omläggning från asfaltbeläggning till olika typer gatsten. Det har speciellt inneburit att man årligen måste fylla på med fogsand i skarvarna mellan stenarna. I år har från i slutet av augusti och ca två veckor in i september, sådan sk fogsand (betongkross eg.) lagts ut över gator i innerstan där gatstenar finns, eller vid storgatsten i rännstenar. I år las ca 50 ton fogsand ut. Tidpunkten överensstämmer väl med de senaste tre överskridandena av PM10. Fogsanden innehåller en del mycket finfördelat, mjäligt, material som kan hänga kvar flera dagar över centrum efter utläggningen. Luftdrag och avgasutblås från bl a bussarna virvlar dessutom, vid torrt väglag, hela tiden upp partiklarna (spridningseffekter uppstår dessutom av att folk trampar omkring stoftet, to m i så hög grad att vissa butiker klagat på nedsmutsningen) . Det görs visserligen en vattenbegjutning i samband med att fogsanden läggs ut men det är inte tillräckligt för att binda alla partiklar. Till saken hör också att den ökade frekvensen av högtrycksspolning med vakuumsugning som vidtagits i centrum för att hålla nere partikelhalterna samtidigt, å andra sidan, tar bort en del av fogsanden varje år och ökar påfyllningsbehovet (ett nytt påtalat besvär av finkornigt stänk som fastnar på fönster mm från detta renhållningsarbete har fö nyligen påtalats från brf Gandalf vid Vaksalagatan)

Från kontorets sida har de senaste utläggningarna av fogsand i slutet av augusti-början av septeber setts som den mest troliga förklaringen till överskridandena i september.
Avgasutblåsen från bussar över fogsand och partiklar överhuvudtaget i rännstenar från accelererande bussar (speciellt vid köerna mot trafiksignalen vid mätstationen) torde vara en bidragande orsak till dessa senaste uppmätta höga halter.

Strandbodgatans effekter

Strandbodgatans avstängning för biltrafik, under fyra år sedan 2007-09-03, har gett betydande effekter på resmönster och omfördelningar av biltrafik i staden. Speciellt har centrala Vaksalagatan och Kungsgatan tenderat få mer biltrafik av detta, liksom stråket Kungsängsleden-Stålgatan-Björkgatan. Vaksalagatan har således ökat med ca 3-4000 vdt, från 11-12 000 vdt till 14000 vdt , medan Väderkvarnsgatan fått något mindre trafik, från ca

14000 vdt före 2007 till ca 10000 vdt efter avstängningen. I maj 2011 under Islandsbrons avstängning ökade flödet åter till ca 14000 på Väderkvarnsgatan.
Det totala antalet bilresor har dessutom tenderat att minska till innerstaden, dvs speciellt under vinterhalvåret, fast mest som en följd av det år 2010 införda dubbdäcksförbudet.
Sammantaget har alltså trots allt inte bara negativa effekter uppkommit av avstängningen.
Angöringen till tågen med bil har försvårats av Strandbodgatans avstängning och den samtidiga avstängningen av den västra entrén och av div. störningar från byggena vid den östra sidan, något som sannolikt tenderat minska den här delen av biltrafiken.
Strandbodgatan öppnas igen för biltrafik tisdagen den 25 oktober 2011. Det blir naturligtvis viktigt att följa utvecklingen av detta, spec. på Väderkvarnsgatan, och t ex hur långt Stationsgatan i befintligt skick har kapacitet att avlasta Väderkvarnsgatan. Trafikräkningar görs för att fả information om hur trafikflödena utvecklas och kan komma att utvecklas framöver, svårt säga hur lång anpassning det kan bli fråga om, efter fyra års ändrade resmönster etc.

Dubbdäcksförbudet

Under dubbdäcksförbudet mellan 2010-10-01 och 2011-04-05 (avkortat 10 dagar pga Islandsbrons avstängning), minskade antalet personbilar på Kungsgatan med ca 40% och det totala flödet med ca 30%. Andelen bilar med dubbdäck efter dubbförbudet, i snittet norr Bäverns gränd, har mätts upp till mellan $10-30 \%$, med något högre värden i slutet av förbudsperioden. Det ligger ju på polisens ansvar att övervaka att bilister följer föreskrifterna om dubbförbudet (under den föregående säsongen fälldes vid kontroller ett tjugotal bilister). Det kan i och för sig noteras att den positiva effekten av trafikminskningen i centrum givetvis är avhängigt en tillräcklig andel dubbdäck i bilparken, en andel som gradvis förväntas minska i och med dubbförbud och information till bilister om dubbdäckens nackdelar. Dessutom är dubb ett halkbekämpningsmedel, i dubbel mening, genom att dubb ruggar upp isiga vägar så att dubbfria däck kan få bättre fäste, inte minst i gator och korsningar där tung trafik genom inbromsningar och accelerationer polerar snö och is. I någon obestämd grad blir dubb, trots allt, på sätt och vis, substituerbart med sandningen.

30-zonen i centrala staden

Sedan 12 maj 2010 gäller $30 \mathrm{~km} /$ tim inom stadskärnan (dvs inom men inte på Skolgatan-Sysslomansg-S:t Olofsg-Kungsgatan-Stramdbodg-Ö Ågatan-Munkg-Drottningg (N Slottsg får 30 hela vägen)-Kyrkogårdsgatan). Kungsgatan undantogs pga främst busstrafikens framkomlighet och överhuvudtaget att det skulle vara förenligt med satsningen på en fördubblad andel kollektivtrafikresor. Effekterna av hastighetssänkningar på partikelhalterna kan dock vara svårbestämda (även om elementära fysikaliska lagar pekar mot positiva effekter). Högre hastigheter på fordon, åtminstone bussar (som dock inte berörs av 30 -zonen), torde öka uppvirvlingseffekten, t ex av fogsanden. När det gäller NO2 råder viss osäkerhet om tecknet på effekten. Det finns fö en rad övriga klart positiva effekter när det gäller en rad parametrar, som buller, vibrationer, trafiksäkerhet, drift-o underhåll, trygghet, lugnare miljö etc att väga mot främst ökade restider.

Sammantaget bedöms effekterna av 30-zonen som på flera sätt positiv, hastigheten har visat sig vara en viktig regulator även när det gäller miljö och luftkvalitet. Diskussioner om en utvidgning av 30 -zonen i innerstan har fö upptagits, men inget konkret har ännu kommit fram. En omfattande hastighetsöversyn är ett krävande arbete som kan bli rätt komplext. Det pågår dessutom ett samarbete mellan Sveriges Kommuner och Landsting, transportstyrelsen m fl med att ta fram föreskrifter för kommuner om tillämpningen av de nya hastighetsreglerna, något som väntas bli klart juni-juli 2012.

Miljözonen

Gatu-och trafiknämnden beslutade vid sitt senaste möte 2011-09-28 att skjuta upp införandet av miljözon i innerstaden med ett år till 1 januari 2013. Anledningen är dels en försenad upphandling av lokaltrafiken, som lett till att UL stått med ett ettårigt avtal utan inskrivet krav på miljöfordon. Den försenade upphandlingen beräknas slutföras under hösten och innehålla miljökrav. Anledningen är också ett försenat beslut i EU om vilka regler som ska gälla för uppgradering av äldre fordon till högre miljöklasser. Sammantaget skulle detta få stora ekonomiska konsekvenser för företag och resenärer genom svårigheterna att trafikera alla linjer (GTN beslut 2011-09-28).

Dragarbrunnsgatan

Projekt Dragarbrunn innehåller ett antal etapper, med början i oktober 2010 i de södra delarna och med avslut i de norra delarna under 2014
Således har Dragarbrunnsgatan etappvis varit avstängd för omdaningen, sedan oktober 2010 och kommer fortsätta att så vara till någon gång under 2014, dvs utan genomgående biltrafik, och med förmodligen onormalt låga flöden gentemot de förväntade. Tillgången till parkeringsgaragen gör att trafikflödet likväl ligger på ca 2000 vdt.
Under en tid från augusti till och med oktober kommer dessutom framkomligheten på
Kungsängsgatan att vara begränsad av gatu- och ledningsarbeten.

Stationsgatan

Gatan har haft begränsad framkomlighet under bygget av det $\mathrm{s} k$ båghuset, och trafiken beräknas ha minskat med ca en tredjedel. En stor del av den angöringstrafik som tidigae gått via Kungsgatan tar nu vägen via Stationsgatan och den nya huvudentrén för angöring med bil

Islandsbron

Islandsbron var helt avstängd för biltrafik under perioden 2011-04-05 till 2011-09-20, då fjärrvärmarbeten och underhållsarbeten genomfördes. Effekterna på bl a Kungsgatan har varit betydande (trafikökningar med i storleksordningen 5000 vdt). Vid återöppnandet kunde markanta trafikminskningar direkt observeras på Kungsgatan - och motsvarande ökningar på Ö Ågatan.

Mätstationens läge, stadshusets ombyggnad

Mätstationens läge har diskuterats och ifrågasatts sedan det uppdagats att det inte följer rekommendationerna i naturvårdsverkets föreskrifter, där speciellt avståndet till närmsta körfältsmitt varit det mest kritiska (ca $2,3 \mathrm{~m}$ nu i stället för rekommenderade $4,5 \mathrm{~m}$). Den utvärdering som gjorts (Karin Persson, SLB, Göteborg) har dock i huvudsak undanröjt de tvivel om läget som uppkommit (även om det också sagts att stationen helst borde ha placerats i annat läge). Det finns också experter som har uttalat sig lite mer kritiskt. Kanske kan de delvis nya erfarenheterna som presenterats här ovan om betydelsen av fogsand, bussarnas moddsläpp och avgasutblås vara tillräckliga skäl för en förnyad prövning (se ovan). Det alternativa läge som gatukontoret och miljökontoret mätte ut för något år sedan, som klarade alla mått, bör ev. övervägas på nytt. Om inte annat i samband med ombyggnaden av stadshuset, som snart blir ytterligare en kritisk faktor att beakta. Kanske måste helt annan adress sökas åtminstone under ombyggnadstiden.

Konsultstödd rapport

Speciellt bussarnas betydelse för partikelhalterna ingår i den utredning, som en konsult väntas komma med inom kort (delvis med stöd av material från ett studentarbete om luften i Uppsala vid institutionen för geovetenskaper i maj 2011). Det kan bl a gälla frågan vad bussarnas axeltryck kan betyda för slitaget på gatan och partikelbildningen. Partikelhalterna har visserligen inte varit höga under dubbförbudsperioden, dvs under vintern, utan det är, givetvis, först efter snösmältningen fram till och med tiden för vintersandupptagningen som höga värden har uppmätts.
Om någon eller några busslinjer kan dras om och avlasta Kungsgatan-Vaksalagatan är i nuläget oklart, gatorna hör ju till de viktigaste huvudgatorna för kollektivtrafiken i staden och kollektivtrafiken ska enligt målsättningar dessutom öka sin andel betydligt (till hälften av den motordrivna trafiken enligt uttalad målsättning i ÖP) .

Planerade åtgärder

Nytt åtgärdsprogram bör enligt centrala direktiv göras vart sjätte år, dvs nästa år kan ett nytt program behöva göras, men det är f n inte helt klart på vilket sätt detta i så fall ska genomföras. Men givetvis kommer då om inte förr alla lämpliga åtgärder för att komma till rätta med luftkvalitetsproblemen att vederbörligen prövas.

Gatu- och trafikkontoret följer givetvis hela tiden utvecklingen och försöker på olika sätt klara den växande stadens trafikproblem och de ökande krav som bl a miljökvalitetsnormer ställer. Ett viktigt led i detta arbete är inte minst byggandet av resecentrum och omdaningen av centrum till något mer ändamålsenligt och attraktivare, som sammantaget förväntas minska bilresandet och ge betydande miljövinster, dvs utöver de negativa effekterna under byggtiden.

Gatu- och trafikkontoret

Tom Karlsson
Chef för gatu-och trafikkontoret

Miljökontoret

Gaturenhållningens åtgärder under 2008-2011 för att minska halterna av PM 10 i centrala Uppsala

Maskinell gaturenhållning har intensifierats sedan 2008, komplettering av den ordinarie maskinella renhållningen har skett med Vacumsugmaskin (VS) med PM10 filter och med högtryckstvättmaskin (HT) med uppsugnings anordning, vilken maskin som har använts har varit boroende av rådande vädersituation. Högtrycksspolning med mindre maskin av gågatan och kringliggande gångbanor sker minst tre gånger i veckan beroende på väder förhållandena.

Extra insatser (VS och HT) har utförts på inom gaturenhållnings zon 2 samt vid Rese centrum, insatser med VS har även skett på de större angränsande gatorna samt på de gator som har dubbla körfält, detta för att miniminera transporten av partiklar in till centrum. Under sommaren 2011 så intensifierades arbetet ytterligare under en testperiod på fyra veckor, VS och HT utfördes dagligen vid Kungsgatan utan nämnvärd effekt på mät resultatet, att använda dessa maskiner intensivare ger alltså ingen större effekt, troligen sker transport av partiklar från övriga omkringliggande områden.

Våren 2011 var extremt torr, mycket sand hade lagts ut under vintern och för att klara värdena så har även vattning utförts som ett komplement till VS och HT

Fördelningen av arbetade timmar:

	2008	2009	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$
VS	650	500	450	550
HT	200	350	400	450

I samband med gaturenhållning med ordinarie maskiner och i synnerhet med VS men även med HT så urholkas fogarna på de gator som har ytlager av smågatsten, detta medför att sand måste tillföras fogarna (så kallad fogning). Under de tillfällen som fogning har utförts så förekommer det utökad dammighet på de fogade gatorna, vid nederbörd sker dessutom en transport, via fordonens hjul, av sand och tillhörande partiklar till i kringliggande gator. När det senare torkar upp så virvlar dammet upp igen. Fogning har utförts vid flera olika tillfällen under denna period, vid senaste tillfället (v. 36) så ser vi ett klart samband med höjda halter av PM10 och fogning.

Ytterligare ett dilemma som uppstår är när det under den kalla årstiden sker väderförändringar och vi tvingas att sopa upp grus och även använda både VS och HT för att nästa dag behöva sanda på uppkommen halka. HT maskinen kan även (från 2011) arbeta i temperaturer ner till minus 10 grader.

Kontoret för samhällsutveckling

Per-Rickard Rönnberg

Sammanfattning av åtgärder under åren 2008-2010 för att förebygga överskridanden av miljökvalitetsnormerna för partiklar, PM 10 i centrala Uppsala

Det är viktigt att beakta att det under perioden 2006-2010 har pågått flera större ombyggnationer i centrala Uppsala, (Rese centrum, Dragarbrunnsgatan) och trafikavstängningar (Strandbodgatan, Stationsgatan). Detta har påverkat trafikflödet samt förekomsten av byggdamm som innehåller PM 10.

Omläggning av busstrafiken till Kungsgatan, 2006 har troligen medfört ökad partikeltransport och uppvirvling.

Trafikåtgärder och andra åtgärder som har vidtagits är bland annat:

Ny - och ombyggnad av cykelvägar, för att göra det attraktivare att använda cykel. Arbetet har intensifierats sedan 2008.
Dubbdäcksförbud, 1 oktober 2010.
30-zon i centrala Uppsala, 12 maj 2010.
Vakuumtorrsugning (2006-2011 och/ eller vattenbegjutning (först 2011) vid torr väderlek. Högtryckstvättning med vakuumuppsugning (2008-2011).
Tre nya stomlinjer för att öka kollektivtrafikens attraktivitet har tillkommit 2008-2011.

Planerade åtgärder

Miljözon 1/1 2013.
Ny bakgrundsmätningsstation, hösten 2012.
Flyttning och ev. komplettering med ytterligare mätstation, utreds våren 2012. Partikelspårning, utreds våren 2012.
Installation av fuktsensorer, utreds våren 2012.
Vintersandsupptagning tidigareläggs i Uppsalas centrala delar, med kompletterande vakuumsugning och högtryckstvättning.
Ytterligare en högtryckstvättmaskin (kombimaskin) kommer att driftsättas (våren 2012).
Projektarbete av studenter om partikelhalter.

Antal överskridanden 2008-2010.

Miljökvalitetsnorm $=\mathbf{5 0} \mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}$, tillåtet antal överskridanden är $\mathbf{3 5}$ dygn per år:

	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	MKN
Överskridanden	53	43	29	35

Ytterligare och mer detaljerad information finns att läsa i:

- Stockholm-Uppsala Läns Luftvårdsförbunds mätrapporter (www.slb.nu/lvf).

Bilagor

- Redovisning av åtgärder för att förebygga överskridande av miljökvalitetsnormer för partiklar, PM10, Gatu-och trafikkontoret 2011-10-17.
- Sammanfattning av Gaturenhållningens åtgärder.

Kontoret för samhällsutveckling

Per-Rickard Rönnberg/Rolf Sundbom

